[en] Neonicotinoid insecticides have made possible, for three decades, to protect sugar beet crops against aphids and the viruses they transmit. However, they have been accused of reducing biodiversity, leading the European Union to ban the use of neonicotinoid-coated seeds. The requests for exemptions of use, submitted annually by different member states, might soon no longer be granted. Here, we performed a comprehensive analysis of the available alternatives to neonicotinoids for aphid control in sugar beets, following the PICO framework. The abstracts of 3878 references were consulted to evaluate alternative control methods. Of these, we selected 301 scientific publications, keeping only those which provided indications of treatment efficacy against sugar beet aphids. We identified 75 control strategies (products or methods) as possible alternatives to neonicotinoids. Each control strategy was evaluated based on four criteria: efficacy, durability, applicability and practicability. Using these criteria, we highlight 20 methods or products that have both potential as alternative to neonicotinoids and whose short-term use is feasible. These alternative methods include five synthetic and three natural insecticides, two entomopathogenic fungi, two arthropod natural enemies, organic and mineral oils, two plant defense elicitors, three farming practices and the potential of resistant varieties. Most of them provide important, but arguably insufficient, control of aphids if used alone. However, most of them appear to be complementary and compatible with each other. Therefore, integrating strategies will be needed to maintain beet yields while limiting unintended effects on environment and biodiversity.
Disciplines :
Agriculture & agronomy Entomology & pest control
Author, co-author :
Verheggen, François ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Barrès, Benoit; Université de Lyon, Anses, INRAE, USC CASPER, Lyon, France
Bonafos, Romain; L’Institut d’Agro de Montpellier, Département Biologie et Ecologie, Montpellier, France
Desneux, Nicolas; Université Cote d’Azur, INRAE, CNRS, UMR ISA, Nice, France
Escobar-Gutiérrez, Abraham J.; INRAE, URP3F, Site du Chêne, Lusignan, France
Gachet, Emmanuel; ANSES, Unité Expertise sur les risques biologiques, Laboratoire de la santé des végétaux, Angers, France
Laville, Jérôme; ANSES, Direction des Autorisations de Mise sur le Marché, Unité des Décisions, Maisons-Alfort, France
Siegwart, Myriam; INRAE, UR PSH, Avignon, France
Thiéry, Denis; INRAE, UMR Save, Villenave d’Ornon, France
Jactel, Hervé; INRAE, University of Bordeaux, Biogeco, Cestas, France
Language :
English
Title :
Producing sugar beets without neonicotinoids: An evaluation of alternatives for the management of viruses-transmitting aphids
Publication date :
11 July 2022
Journal title :
Entomologia Generalis
ISSN :
0171-8177
eISSN :
2363-7102
Publisher :
Schweizerbart Science Publishers
Volume :
42
Issue :
4
Pages :
491 - 498
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
The authors thank Patrick Leboucher (ANSES), Farida Ouadi (ANSES) and Franck Radet (ANSES) for their valuable contributions. The data presented in this document have been generated during expert work carried out on behalf of the French Agency for Food, Environmental and Occupational Health & Safety (ANSES).
Allahvaisi, S., Hassani, M., & Heidari, B. (2021). Bioactivity of aza-dirachtin against Scrobipalpa ocellatella Boyd. (Lepidoptera: Gelechidae) on sugar beet. Journal of Plant Protection Research, 61, 280–289. https://doi.org/10.24425/jppr.2021.137954
Anjum, F., & Wright, D. (2016). Relative toxicity of insecticides to the crucifer pests Plutella xylostella and Myzus persicae and their natural enemies. Crop Protection (Guildford, Surrey), 88, 131–136. https://doi.org/10.1016/j.cropro.2016.06.002
Arancon, N. Q., Edwards, C. A., Yardim, E. N., Oliver, T. J., Byrne, R. J., & Keeney, G. (2007). Suppression of two-spotted spider mite (Tetranychus urticae), mealy bug (Pseudococcus sp) and aphid (Myzus persicae) populations and damage by vermi-composts. Crop Protection (Guildford, Surrey), 26(1), 29–39. https://doi.org/10.1016/j.cropro.2006.03.013
Balzan, M. V., & Moonen, A. (2014). Field margin vegetation enhances biological control and crop damage suppression from multiple pests in organic tomato fields. Entomologia Experimentalis et Applicata, 150(1), 45–65. https://doi.org/10.1111/eea.12142
Barmentlo, S. H., Schrama, M., de Snoo, G. R., van Bodegom, P. M., van Nieuwenhuijzen, A., & Vijver, M. G. (2021). Experimental evidence for neonicotinoid driven decline in aquatic emerging insects. Proceedings of the National Academy of Sciences of the United States of America, 118(44), e2105692118. https://doi. org/10.1073/pnas.2105692118
Biancardi, E., Lewellen, R. T., De Biaggi, M., Erichsen, A. W., & Stevanato, P. (2002). The origin of rhizomania resistance in sugar beet. Euphytica, 127(3), 383–397. https://doi. org/10.1023/A:1020310718166
Consolidated text: Regulation (EC) No. 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02 009R1107-20210327
Comadira, G., Rasool, B., Karpinska, B., Morris, J., Verrall, S. R., Hedley, P. E., … Hancock, R. D. (2015). Nitrogen deficiency in barley (hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance. Journal of Experimental Botany, 66(12), 3639–3655. https://doi.org/10.1093/jxb/erv276
Cooper, W. R., & Horton, D. R. (2015). Effects of elicitors of host plant defenses on pear psylla, Cacopsylla pyricola. Entomologia Experimentalis et Applicata, 157(3), 300–306. https://doi.org/10.1111/eea.12360
Costello, M. J. (1994). Broccoli growth, yield and level of aphid infestation in leguminous living mulches. Biological Agriculture and Horticulture, 10(3), 207–222. https://doi.org/10.1080/0144 8765.1994.9754669
Desneux, N., Decourtye, A., & Delpuech, J. M. (2007). The sub-lethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52(1), 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440
Dupuis, B., Cadby, J., Goy, G., Tallant, M., Derron, J., Schwaerzel, R., & Steinger, T. (2017). Control of potato virus Y (PVY) in seed potatoes by oil spraying, straw mulching and intercrop-ping. Plant Pathology, 66(6), 960–969. https://doi.org/10.1111/ppa.12698
Edwards, C. A., Arancon, N. Q., Vasko-Bennett, M., Askar, A., Keeney, G., & Little, B. (2010). Suppression of green peach aphid (Myzus persicae) (Sulz.), citrus mealybug (Planococcus citri) (Risso), and two spotted spider mite (Tetranychus urticae) (Koch.) attacks on tomatoes and cucumbers by aqueous extracts from vermicomposts. Crop Protection (Guildford, Surrey), 29(1), 80–93. https://doi.org/10.1016/j.cropro.2009.08.011
Elbert, A., & Overbeck, H. (1990). Imidacloprid, a novel sys-temic nitromethylene analogue insecticide for crop protection. Proceedings of the British Crop Protection Conference – Pests and Diseases, BCPC, Farnham, Surrey, UK, pp. 21–28.
Elbert, A., Haas, M., Springer, B., Thielert, W., & Nauen, R. (2008). Applied aspects of neonicotinoid uses in crop protec-tion. Pest Management Science, 64(11), 1099–1105. https://doi. org/10.1002/ps.1616
Epstein, Y., Chapron, G., & Verheggen, F. (2021). EU court to rule on banned pesticide use. Science, 373(6552), 290. https://doi. org/10.1126/science.abj9226
Epstein, Y., Chapron, G., & Verheggen, F. (2022). What is an emer-gency? The case of neonicotinoids and emergency situations in plant protection in the EU. Ambio. https://doi.org/10.1007/s13280-022-01703-5
EPPO (2021). List of databases on registered plant protection products in the EPPO region. https://www.eppo.int/ACTIVITIES/plant_protection_products/registered_products. Accessed online on December 7th, 2021.
EU. (2009). Directive 2009/128/EC of the European Parliament and of the council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pestici-deinsecticides. OJ EU, L309, 71–86.
European Food Safety Authority (2018). Neonicotinoids: risks to bees confirmed. Accessed online on December 7th, 2021. www. efsa.europa.eu/en/press/news/180228
Farmers Daily (2020). Beet growers reveal the massive yield cost of virus yellows. Accessed online on December 7th, 2021. https://www.fwi.co.uk/arable/crop-management/disease-management/beet-growers-reveal-the-massive-yield-cost-of-virus-yellows
Fernández-Grandon, G. M., Harte, S. J., Ewany, J., Bray, D., & Stevenson, P. C. (2020). Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants, 9(2), 173. https://doi. org/10.3390/plants9020173
Francis, S. A., & Luterbacher, M. C. (2003). Identification and exploitation of novel disease resistance genes in sugar beet. Pest Management Science, 59(2), 225–230. https://doi.org/10.1002/ps.569
Goulson, D. (2013). Review: An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50(4), 977–987. https://doi.org/10.1111/1365-2664.12111
Grimmer, M. K., Bean, K. M. R., Qi, A., Stevens, M., & Asher, M. J. C. (2008). The action of three beet yellows virus resistance QTLs depends on alleles at a novel genetic locus that con-trols symptom development. Plant Breeding, 127(4), 391–397. https://doi.org/10.1111/j.1439-0523.2008.01515.x
Hallmann, C. A., Foppen, R. P. B., Van Turnhout, C. A. M., De Kroon, H., & Jongejans, E. (2014). Declines in insectivo-rous birds are associated with high neonicotinoid concentra-tions. Nature, 511(7509), 341–343. https://doi.org/10.1038/nature13531
Hauer, M., Hansen, A. L., Manderyck, B., Olsson, Å., Raaijmakers, E., Hanse, B., … Märländer, B. (2017). Neonicotinoids in sugar beet cultivation in central and northern europe: Efficacy and environmental impact of neonicotinoid seed treatments and alternative measures. Crop Protection (Guildford, Surrey), 93, 132–142. https://doi.org/10.1016/j.cropro.2016.11.034
ITB (2020). L’essentiel sur la jaunisse: biologie, transmission, sur-veillance et méthodes de lutte. Accessed online on December 7th, 2021. https://www.itbfr.org/tous-les-articles/article/news/f-a-q-tout-savoir-sur-la-jaunisse/
Jactel, H., Verheggen, F., Thiéry, D., Escobar-Gutiérrez, A. J., Gachet, E., & Desneux, N., & the Neonicotinoids Working Group. (2019). Alternatives to neonicotinoids. Environment International, 129, 423–429. https://doi.org/10.1016/j.envint. 2019.04.045
James, L. C., Bean, K. M. R., Grimmer, M. K., Barnes, S., Kraft, T., & Stevens, M. (2012). Varieties of the future: Identification of ‘broad spectrum’ genetic resistance in sugar beet. International Sugar Journal, 114(1359), 164–168.
Khelifa, M. (2017). Possible induction of potato plant defences against potato virus Y by mineral oil application. European Journal of Plant Pathology, 147(2), 339–348. https://doi. org/10.1007/s10658-016-1006-7
Lai, R., You, M., Lotz, L. A. P. B., & Vasseur, L. (2011). Response of green peach aphids and other arthropods to garlic intercropped with tobacco. Agronomy Journal, 103(3), 856–863. https://doi. org/10.2134/agronj2010.0404
Le Guigo, P., Rolier, A., & Le Corff, J. (2012). Plant neighbor-hood influences colonization of brassicaceae by specialist and generalist aphids. Oecologia, 169(3), 753–761. https://doi.org/10.1007/s00442-011-2241-4
Lee, W. W., Shin, T. Y., Bae, S. M., & Woo, S. D. (2015). Screening and evaluation of entomopathogenic fungi against the green peach aphid, Myzus persicae, using multiple tools. Journal of Asia-Pacific Entomology, 18(3), 607–615. https://doi.org/10.1016/j.aspen.2015.07.012
Little, A. G., Arellano, C., Kennedy, G. G., & Cardoza, Y. J. (2011). Bottom-up effects mediated by an organic soil amendment on the cabbage aphid pests Myzus persicae and Brevicoryne bras-sicae. Entomologia Experimentalis et Applicata, 139(2), 111– 119. https://doi.org/10.1111/j.1570-7458.2011.01112.x
Luterbacher, M. C., Asher, M. J. C., Deambrogio, E., Biancardi, E., Stevenato, P., & Frese, L. (2004). Sources of resistance to diseases of sugar beet in related beta germplasm: I. foliar dis-eases. Euphytica, 139(2), 105–121. https://doi.org/10.1007/s10681-004-2488-5
Methley, A. M., Campbell, S., Chew-Graham, C., McNally, R., & Cheraghi-Sohi, S. (2014). PICO, PICOS and SPIDER: A com-parison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Services Research, 14(1), 579. https://doi.org/10.1186/s12913-014-0579-0
Pelosi, C., Bertrand, C., Daniele, G., Coeurdassier, M., Benoit, P., Nélieu, S., … Fritsch, C. (2021). Residues of currently used pesticides in soils and earthworms: A silent threat? Agriculture, Ecosystems & Environment, 305, 107167. https://doi.org/10.1016/j.agee.2020.107167
Rolot, J.-L., Seutin, H., & Deveux, L. (2021). Assessment of treatments to control the spread of PVY in seed potato crops: Results obtained in belgium through a multi-year trial. Potato Research, 64(3), 435–458. https://doi.org/10.1007/s11540-020-09485-7
Russell, G. E. (1966). Breeding for resistance to infection with yellowing viruses in sugar beet: I. resistance in virus‐tolerant breeding material. Annals of Applied Biology, 57(2), 311–320. https://doi.org/10.1111/j.1744-7348.1966.tb03825.x
Samara, R., Lowery, T. D., Stobbs, L. W., Vickers, P. M., & Bittner, L. A. (2021). Assessment of the effects of novel insecticides on green peach aphid (Myzus persicae) feeding and transmission of Turnip mosaic virus (TuMV). Pest Management Science, 77(3), 1482–1491. https://doi.org/10.1002/ps.6169
Schmutterer, H. (1990). Properties and potential of natural pesticides from the neem tree. Azadirachta indica, 35, 271–297. https://doi.org/10.1146/annurev.en.35.010190.001415
Schulz, R., Bub, S., Petschick, L. L., Stehle, S., & Wolfram, J. (2021). Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science, 372(6537), 81–84. https://doi.org/10.1126/science.abe1148
Scorsetti, A. C., Humber, R. A., García, J. J., & Lastra, C. C. (2007). Natural occurrence of entomopathogenic fungi (Zygomycetes: Entomophthorales) of aphid (Hemiptera: Aphididae) pests of horticultural crops in Argentina. BioControl, 52(5), 641–655. https://doi.org/10.1007/s10526-006-9045-1
Sidauruk, L., & Sipayung, P. (2018). Population of Myzus persi-cae (Sulzer) and insect diversity on intercropping potatoes with other plants which planting at different time. Paper presented at the IOP Conference Series: Earth and Environmental Science, 205. https://doi.org/10.1088/1755-1315/205/1/012018
Silva-Filho, R., Santos, R. H. S., Tavares, W. D. S., Leite, G. L. D., Wilcken, C. F., Serrão, J. E., & Zanuncio, J. C. (2014). Rice-straw mulch reduces the green peach aphid, myzus persicae (hemiptera: Aphididae) populations on kale, Brassica oleracea var. Acephala (Brassicaceae) plants. PLoS One, 9(4), e94174. https://doi.org/10.1371/journal.pone.0094174
Stuligross, C., & Williams, N. M. (2021). Past insecticide expo-sure reduces bee reproduction and population growth rate. Proceedings of the National Academy of Sciences of the United States of America, 118(48), e2109909118. https://doi. org/10.1073/pnas.2109909118
Toennisson, T. A., Klein, J. T., & Burrack, H. (2019). Measuring the effect of non-crop flowering plants on natural enemies in organic tobacco. Biological Control, 137, 104023. https://doi. org/10.1016/j.biocontrol.2019.104023
Tripathi, D., & Pappu, H. R. (2015). Evaluation of acibenzolar-S-methyl-induced resistance against iris yellow spot tospovirus. European Journal of Plant Pathology, 142(4), 855–864. https://doi.org/10.1007/s10658-015-0657-0
Villemey, A., Jeusset, A., Vargac, M., Bertheau, Y., Coulon, A., Touroult, J., … Sordello, R. (2018). Can linear transporta-tion infrastructure verges constitute a habitat and/or a corri-dor for insects in temperate landscapes? A systematic review. Environmental Evidence, 7(1), 5. https://doi.org/10.1186/s13750-018-0117-3
Wagner, D. L. (2020). Insect declines in the Anthropocene. Annual Review of Entomology, 65(1), 457–480. https://doi.org/10.1146/annurev-ento-011019-025151
Whitehorn, P. R., O’Connor, S., Wackers, F. L., & Goulson, D. (2012). Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science, 336(6079), 351–352. https://doi.org/10.1126/science.1215025
Zanic, K., Ban, D., Gotlin Culjak, T., Goreta Ban, S., Dumicic, G., Haramija, J., & Znidarcic, D. (2013). Aphid populations (Hemiptera: Aphidoidea) depend of mulching in watermelon production in the mediterranean region of Croatia. Spanish Journal of Agricultural Research, 11(4), 1120–1128. https://doi. org/10.5424/sjar/2013114-4349
Zhang, C., Xu, D., Jiang, X., Zhou, Y., Cui, J., Zhang, C., … Slater, A. (2008). Genetic approaches to sustainable pest management in sugar beet (Beta vulgaris). Annals of Applied Biology, 152(2), 143–156. https://doi.org/10.1111/j.1744-7348.2008.00228.x