[en] Keratin is an insoluble fibrous protein from natural environments, which can be recycled to value-added products by keratinolytic microorganisms. A microbial consortium with efficient keratinolytic activity was previously enriched from soil, but the genetic basis behind its remarkable degradation properties was not investigated yet. To identify the metabolic pathways involved in keratinolysis and clarify the observed synergy among community members, shotgun metagenomic sequencing was performed to reconstruct metagenome-assembled genomes. More than 90% genera of the enriched bacterial consortium were affiliated to Chryseobacterium, Stenotrophomonas, and Pseudomonas. Metabolic potential and putative keratinases were predicted from the metagenomic annotation, providing the genetic basis of keratin degradation. Furthermore, metabolic pathways associated with keratinolytic processes such as amino acid metabolism, disulfide reduction and urea cycle were investigated from seven high-quality metagenome-assembled genomes, revealing the potential metabolic cooperation related to keratin degradation. This knowledge deepens the understanding of microbial keratinolytic mechanisms at play in a complex community, pinpointing the significance of synergistic interactions, which could be further used to optimize industrial keratin degradation processes.
Disciplines :
Microbiology
Author, co-author :
Kang, Dingrong ; Université de Liège - ULiège > Département GxABT > Microbial technologies
Huang, Yuhong; Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800 Kongens Lyngby, Denmark, Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Nesme, Joseph; Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
Herschend, Jakob; Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
Jacquiod, Samuel; Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark, Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, France
Kot, Witold; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
Hansen, Lars Hestbjerg; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
Lange, Lene; Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800 Kongens Lyngby, Denmark, Bioeconomy, Research & Advisory, Karensgade 5, DK-2500 Valby, Denmark
Sørensen, Søren J; Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark. Electronic address: sjs@bio.ku.dk
Language :
English
Title :
Metagenomic analysis of a keratin-degrading bacterial consortium provides insight into the keratinolytic mechanisms.
This research was funded by the Danish Innovation Fund (grant number 1308-00015B , Keratin2Protein) and also under the support of the Chinese Scholarship Council (CSC) Scholarship Program.
Bach, E., Lopes, F.C., Brandelli, A., Biodegradation of α and β-keratins by gram-negative bacteria. Int. Biodeterior. Biodegradation 104 (2015), 136–141, 10.1016/j.ibiod.2015.06.001.
Bagewadi, Z.K., Mulla, S.I., Ninnekar, H.Z., Response surface methodology based optimization of keratinase production from Trichoderma harzianum isolate HZN12 using chicken feather waste and its application in dehairing of hide. Journal of Environmental Chemical Engineering 6 (2018), 4828–4839, 10.1016/j.jece.2018.07.007.
Ben, Elhoul M., Zarai, Jaouadi N., Rekik, H., Omrane, Benmrad M., Mechri, S., Moujehed, E., et al. Biochemical and molecular characterization of new keratinoytic protease from Actinomadura viridilutea DZ50. Int. J. Biol. Macromol. 92 (2016), 299–315, 10.1016/j.ijbiomac.2016.07.009.
Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 (2014), 2114–2120, 10.1093/bioinformatics/btu170.
Bowers, R.M., Kyrpides, N.C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T., et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35 (2017), 725–731, 10.1038/nbt.3893.
Brandelli, A., Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food and Bioprocess Technol. 1 (2008), 105–116, 10.1007/s11947-007-0025-y.
Brenner, K., You, L., Arnold, F.H., Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26 (2008), 483–489, 10.1016/j.tibtech.2008.05.004.
Busk, P.K., Lange, L., Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs. Appl. Environ. Microbiol. 79 (2013), 3380–3391, 10.1128/AEM.03803-12.
Busk, P.K., Pilgaard, B., Lezyk, M.J., Meyer, A.S., Lange, L., Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function. BMC Bioinformatics, 18, 2017, 214, 10.1186/s12859-017-1625-9.
Cedrola, S.M., de Melo, A.C., Mazotto, A.M., Lins, U., Zingali, R.B., Rosado, A.S., et al. Keratinases and sulfide from Bacillus subtilis SLC to recycle feather waste. World J. Microbiol. Biotechnol. 28 (2012), 1259–1269, 10.1007/s11274-011-0930-0.
Fang, Z., Zhang, J., Liu, B., Du, G., Chen, J., Biochemical characterization of three keratinolytic enzymes from Stenotrophomonas maltophilia BBE11-1 for biodegrading keratin wastes. Int. Biodeterior. Biodegradation 82 (2013), 166–172, 10.1016/j.ibiod.2013.03.008.
Fellahi, S., Chibani, A., Feuk-Lagerstedt, E., Taherzadeh, M.J., Identification of two new keratinolytic proteases from a Bacillus pumilus strain using protein analysis and gene sequencing. AMB Expr., 6, 2016, 42, 10.1186/s13568-016-0213-0.
Gilmore, S.P., O'Malley, M.A., Microbial communities for bioprocessing: lessons learned from nature. Current Opinion in Chemical Engineering 14 (2016), 103–109, 10.1016/j.coche.2016.09.003.
Gupta, R., Ramnani, P., Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol. 70 (2006), 21–33, 10.1007/s00253-005-0239-8.
Gurav, R.G., Tang, J., Jadhav, J.P., Sulfitolytic and keratinolytic potential of Chryseobacterium sp. RBT revealed hydrolysis of melanin containing feathers. 3 Biotech, 6, 2016, 145, 10.1007/s13205-016-0464-0.
Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G., QUAST: quality assessment tool for genome assemblies. Bioinformatics 29 (2013), 1072–1075, 10.1093/bioinformatics/btt086.
Hamiche, S., Mechri, S., Khelouia, L., Annane, R., El Hattab, M., Badis, A., et al. Purification and biochemical characterization of two keratinases from Bacillus amyloliquefaciens S13 isolated from marine brown alga Zonaria tournefortii with potential keratin-biodegradation and hide-unhairing activities. Int. J. Biol. Macromol. 122 (2019), 758–769, 10.1016/j.ijbiomac.2018.10.174.
Hess, M., Sczyrba, A., Egan, R., Kim, T.-W., Chokhawala, H., Schroth, G., et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331 (2011), 463–467, 10.1126/science.1200387.
Holkar, C.R., Jain, S.S., Jadhav, A.J., Pinjari, D.V., Valorization of keratin based waste. Process Saf. Environ. Prot. 115 (2018), 85–98, 10.1016/j.psep.2017.08.045.
Huang, Y., Lezyk, M., Herbst, F.A., Busk, P.K., Lange, L., Novel keratinolytic enzymes, discovered from a talented and efficient bacterial keratin degrader. Sci. Rep., 10, 2020, 10033, 10.1038/s41598-020-66792-2.
Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M.C., et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44 (2016), D286–D293, 10.1093/nar/gkv1248.
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernandez-Plaza, A., Forslund, S.K., Cook, H., et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47 (2019), D309–D314, 10.1093/nar/gky1085.
Hyatt, D., Chen, G.L., Locascio, P.F., Land, M.L., Larimer, F.W., Hauser, L.J., Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11, 2010, 119, 10.1186/1471-2105-11-119.
Igbinosa, E.O., Oviasogie, F.E., Multiple antibiotics resistant among environmental isolates of Stenotrophomonas maltophilia. J. Appl. Sci. Environ. Manag. 18 (2014), 255–261, 10.4314/jasem.v18i2.16.
Jaouadi, B., Abdelmalek, B., Fodil, D., Ferradji, F.Z., Rekik, H., Zarai, N., et al. Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from Streptomyces sp. strain AB1 with high stability in organic solvents. Bioresour. Technol. 101 (2010), 8361–8369, 10.1016/j.biortech.2010.05.066.
Jaouadi, N.Z., Rekik, H., Badis, A., Trabelsi, S., Belhoul, M., Yahiaoui, A.B., et al. Biochemical and molecular characterization of a serine keratinase from Brevibacillus brevis US575 with promising keratin-biodegradation and hide-dehairing activities. PLoS One, 8, 2013, e76722, 10.1371/journal.pone.0076722.
Kanehisa, M., Goto, S., KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 (2000), 27–30, 10.1093/nar/gkw1092.
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K., KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45 (2017), D353–D361.
Kang, D.D., Froula, J., Egan, R., Wang, Z., MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ., 3, 2015, e1165, 10.7717/peerj.1165.
Kang, D., Herschend, J., Al-Soud, W.A., Mortensen, M.S., Gonzalo, M., Jacquiod, S., et al. Enrichment and characterization of an environmental microbial consortium displaying efficient keratinolytic activity. Bioresour. Technol. 270 (2018), 303–310, 10.1016/j.biortech.2018.09.006.
Kang, D., Jacquiod, S., Herschend, J., Wei, S., Nesme, J., Sorensen, S.J., Construction of simplified microbial consortia to degrade recalcitrant materials based on enrichment and dilution-to-extinction cultures. Front. Microbiol., 10, 2019, 3010, 10.3389/fmicb.2019.03010.
Kang, E., Jin, H.S., La, J.W., Sung, J.Y., Park, S.Y., Kim, W.C., et al. Identification of keratinases from Fervidobacterium islandicum AW-1 using dynamic gene expression profiling. Microb. Biotechnol. 13 (2020), 442–457, 10.1111/1751-7915.13493.
Korniłłowicz-Kowalska, T., Bohacz, J., Biodegradation of keratin waste: theory and practical aspects. Waste Manag. 31 (2011), 1689–1701, 10.1016/j.wasman.2011.03.024.
Lange, L., Huang, Y., Busk, P.K., Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance. Appl. Microbiol. Biotechnol. 100 (2016), 2083–2096, 10.1007/s00253-015-7262-1.
Lee, C.H., Kim, M.S., Chung, B.M., Leahy, D.J., Coulombe, P.A., Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nat. Struct. Mol. Biol. 19 (2012), 707–715, 10.1038/nsmb.2330.
Lee, D.W., Lee, Y.J., Jin, H.S., Kim, J.Y., Nam, G.W., Lee, S.J., Thermophile-derived Keratinase and Use Thereof. 2020 (Google Patents).
Li, D., Liu, C.M., Luo, R., Sadakane, K., Lam, T.W., MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31 (2015), 1674–1676, 10.1093/bioinformatics/btv033.
Lin, X., Kelemen, D.W., Miller, E.S., Shih, J.C., Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Appl. Environ. Microbiol. 61 (1995), 1469–1474.
Liu, N., Li, H., Chevrette, M.G., Zhang, L., Cao, L., Zhou, H., et al. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. The ISME Journal 13 (2018), 104–117, 10.1038/s41396-018-0255-1.
McHardy, A.C., Rigoutsos, I., What's in the mix: phylogenetic classification of metagenome sequence samples. Curr. Opin. Microbiol. 10 (2007), 499–503, 10.1016/j.mib.2007.08.004.
Minty, J.J., Singer, M.E., Scholz, S.A., Bae, C.H., Ahn, J.H., Foster, C.E., et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. PNAS 110 (2013), 14592–14597, 10.1073/pnas.1218447110.
Mitchell, A.L., Attwood, T.K., Babbitt, P.C., Blum, M., Bork, P., Bridge, A., et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47 (2018), D351–D360, 10.1093/nar/gky1100.
Mohamad, N., Phang, L.-y., Abd-Aziz, S., Optimization of metallo-keratinase production by Pseudomonas sp. LM19 as a potential enzyme for feather waste conversion. Biocatalysis and Biotransformation 35 (2017), 41–50, 10.1080/10242422.2017.1280031.
Nasipuri, P., Herschend, J., Brejnrod, A.D., Madsen, J.S., Espersen, R., Svensson, B., et al. Community-intrinsic properties enhance keratin degradation from bacterial consortia. PLoS One, 15, 2020, e0228108, 10.1371/journal.pone.0228108.
Navone, L., Speight, R., Understanding the dynamics of keratin weakening and hydrolysis by proteases. PLoS One, 13, 2018, e0202608, 10.1371/journal.pone.0202608.
Nurk, S., Meleshko, D., Korobeynikov, A., Pevzner, P.A., metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27 (2017), 824–834, 10.1101/gr.213959.116.
Onifade, A., Al-Sane, N., Al-Musallam, A., Al-Zarban, S., A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol. 66 (1998), 1–11, 10.1016/S0960-8524(98)00033-9.
Oren, A., Microbial metabolism: importance for environmental biotechnology. Environmental biotechnology. Springer pp., 2010, 193–255.
Pande, S., Merker, H., Bohl, K., Reichelt, M., Schuster, S., De Figueiredo, L.F., et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. The ISME Journal 8 (2014), 953–962, 10.1038/ismej.2013.211.
Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., Tyson, G.W., CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25 (2015), 1043–1055, 10.1101/gr.186072.114.
Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.A., et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36 (2018), 996–1004, 10.1038/nbt.4229.
Peng, Z., Zhang, J., Du, G., Chen, J., Keratin waste recycling based on microbial degradation: mechanisms and prospects. ACS Sustain. Chem. Eng. 7 (2019), 9727–9736, 10.1021/acssuschemeng.9b01527.
Peng, Z., Mao, X., Zhang, J., Du, G., Chen, J., Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis. Biotechnology for Biofuels 13 (2020), 1–12, 10.1186/s13068-020-01700-4.
Prakash, P., Jayalakshmi, S.K., Sreeramulu, K., Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl. Microbiol. Biotechnol. 87 (2010), 625–633, 10.1007/s00253-010-2499-1.
Prameela, K., Venkatesh, K., Immandi, S.B., Kasturi, A.P.K., Rama, Krishna C., Murali, Mohan C., Next generation nutraceutical from shrimp waste: the convergence of applications with extraction methods. Food Chem. 237 (2017), 121–132, 10.1016/j.foodchem.2017.05.097.
Rahayu, S., Syah, D., Suhartono, M.T., Degradation of keratin by keratinase and disulfide reductase from Bacillus sp. MTS of Indonesian origin. Biocatalysis and Agricultural Biotechnology 1 (2012), 152–158, 10.1016/j.bcab.2012.02.001.
Ramnani, P., Gupta, R., Keratinases vis-à-vis conventional proteases and feather degradation. World J. Microbiol. Biotechnol. 23 (2007), 1537–1540, 10.1007/s11274-007-9398-3.
Robert, X., Gouet, P., Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42 (2014), W320–W324, 10.1093/nar/gku316.
Shavandi, A., Carne, A., Bekhit, A.A., Bekhit, A.E.-D.A., An improved method for solubilisation of wool keratin using peracetic acid. Journal of Environmental Chemical Engineering 5 (2017), 1977–1984, 10.1016/j.jece.2017.03.043.
Shavandi, A., Silva, T.H., Bekhit, A.A., Bekhit, A.E.-D.A., Keratin: dissolution, extraction and biomedical application. Biomaterials Science 5 (2017), 1699–1735.
Sievers, F., Higgins, D.G., Clustal omega for making accurate alignments of many protein sequences. Protein Sci. 27 (2018), 135–145, 10.1002/pro.3290.
Simon, C., Daniel, R., Metagenomic analyses: past and future trends. Appl. Environ. Microbiol. 77 (2011), 1153–1161, 10.1128/AEM.02345-10.
Singh, S.P., Kumar, J., Sharma, N., Kaushal, G., Sahoo, D., Rai, A.K., et al. Metagenomic insights into the taxonomic and functional features of Kinema, a traditional fermented soybean product of Sikkim Himalaya. Front. Microbiol., 10, 2019, 1744, 10.3389/fmicb.2019.01744.
Soares, L.A., Rabelo, C.A.B.S., Sakamoto, I.K., Delforno, T.P., Silva, E.L., Varesche, M.B.A., Metagenomic analysis and optimization of hydrogen production from sugarcane bagasse. Biomass Bioenergy 117 (2018), 78–85, 10.1016/j.biombioe.2018.07.018.
Tao, L.-Y., Gong, J.-S., Su, C., Jiang, M., Li, H., Li, H., et al. Mining and expression of a metagenome-derived keratinase responsible for biosynthesis of silver nanoparticles. ACS Biomaterials Science & Engineering 4 (2018), 1307–1315, 10.1021/acsbiomaterials.7b00687.
Tian, J., Xu, Z., Long, X., Tian, Y., Shi, B., High-expression keratinase by Bacillus subtilis SCK6 for enzymatic dehairing of goatskins. Int. J. Biol. Macromol. 135 (2019), 119–126, 10.1016/j.ijbiomac.2019.05.131.
Treitli, S.C., Kolisko, M., Husník, F., Keeling, P.J., Hampl, V., Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. PNAS 116 (2019), 19675–19684, 10.1073/pnas.1910793116.
Truong, D.T., Franzosa, E.A., Tickle, T.L., Scholz, M., Weingart, G., Pasolli, E., et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12 (2015), 902–903, 10.1038/nmeth.3589.
Walker, J.M., The Proteomics Protocols Handbook: Springer. 2005.
Wang, B., Yang, W., McKittrick, J., Meyers, M.A., Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 76 (2016), 229–318, 10.1016/j.pmatsci.2015.06.001.
Youenou, B., Favre-Bonte, S., Bodilis, J., Brothier, E., Dubost, A., Muller, D., et al. Comparative genomics of environmental and clinical Stenotrophomonas maltophilia strains with different antibiotic resistance profiles. Genome Biol. Evol. 7 (2015), 2484–2505, 10.1093/gbe/evv161.
Zhang, J., Wang, X., Huo, D., Li, W., Hu, Q., Xu, C., et al. Metagenomic approach reveals microbial diversity and predictive microbial metabolic pathways in Yucha, a traditional Li fermented food. Sci. Rep., 6, 2016, 32524, 10.1038/srep32524.
Zhao, W., Yang, R., Zhang, Y., Wu, L., Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam flash-explosion. Green Chem. 14 (2012), 3352–3360, 10.1039/C2GC36243K.
Zou, Q., Habermann-Rottinghaus, S.M., Murphy, K.P., Urea effects on protein stability: hydrogen bonding and the hydrophobic effect. Proteins 31 (1998), 107–115.