[en] Context. 29P/Schwassmann-Wachmann 1 is a distant Centaur/comet, showing persistent CO-driven activity and frequent outbursts. Aims: We aim to better characterize its gas and dust activity from multiwavelength observations performed during outbursting and quiescent states. Methods: We used the HIFI, PACS and SPIRE instruments of the Herschel space observatory on several dates in 2010, 2011, and 2013 to observe the H2O 557 GHz and NH3 573 GHz lines and to image the dust coma in the far-infrared. Observations with the IRAM 30 m telescope were undertaken in 2007, 2010, 2011, and 2021 to monitor the CO production rate through the 230 GHz line, and to search for HCN at 89 GHz. The 70 and 160 µm PACS images were used to measure the thermal flux from the nucleus and the dust coma. Modeling was performed to constrain the size of the sublimating icy grains and to derive the dust production rate. Results: HCN is detected for the first time in comet 29P (at 5σ in the line area). H2O is detected as well, but not NH3. H2O and HCN line shapes differ strongly from the CO line shape, indicating that these two species are released from icy grains. CO production rates are in the range (2.9-5.6) × 10E28 s−1 (1400-2600 kg s−1). A correlation between the CO production rate and coma brightness is observed, as is a correlation between CO and H2O production. The correlation obtained between the excess of CO production and excess of dust brightness with respect to the quiescent state is similar to that established for the continuous activity of comet Hale-Bopp. The measured Q(H2O)/Q(CO) and Q(HCN)/Q(CO) production rate ratios are 10.0 ± 1.5 % and 0.12 ± 0.03 %, respectively, averaging the April-May 2010 measurements (Q(H2O) = (4.1 ± 0.6) × 10E27 s−1, Q(HCN) = (4.8 ± 1.1) × 10E25 s−1). We derive three independent and similar values of the effective radius of the nucleus, ~31 ± 3 km, suggesting an approximately spherical shape. The inferred dust mass-loss rates during quiescent phases are in the range 30-120 kg s−1, indicating a dust-to-gas mass ratio <0.1 during quiescent activity. We conclude that strong local heterogeneities exist on the surface of 29P, with quenched dust activity from most of the surface, but not in outbursting regions. Conclusions: The volatile composition of the atmosphere of 29P strongly differs from that of comets observed within 3 au from the Sun. The observed correlation between CO, H2O and dust activity may provide important constraints for the outburst-triggering mechanism.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Bockelée-Morvan, D.; LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195, Meudon, France
Biver, N.; LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195, Meudon, France
Schambeau, C. A.; University of Central Florida, University of Central Florida, Department of Physics
Crovisier, J.; LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195, Meudon, France
Opitom, C.; Royal Observatory Edinburgh
de Val Borro, M.; Goddard Space Flight Center, Astrophysics Division
Lellouch, E.; LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195, Meudon, France
Hartogh, P.; Max-Planck-Institute for Solar System Research, Lindau
Vandenbussche, B.; Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, Bus-2410, 3000, Belgium
Jehin, Emmanuel ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Kidger, M.; European Space Agency European Space Astronomy Centre, Camino Bajo el Castillo, s/n Urbanización Villafranca del Castillo, 28692, Villanueva de la Cañada, Madrid, Spain
Küppers, M.; European Space Agency European Space Astronomy Centre, Camino Bajo el Castillo, s/n Urbanización Villafranca del Castillo, 28692, Villanueva de la Cañada, Madrid, Spain
Lis, D. C.; Jet Propulsion Laboratory
Moreno, R.; LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195, Meudon, France
Szutowicz, S.; Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Bartycka 18A, Warszawa, 00-716, Poland
Zakharov, V.; INAF - Istituto di Astrofísica e Planetologia Spaziali, Area Ricerca Tor Vergata, Via Fosso del Cavaliere 100, 00133, Rome, Italy, LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195, Meudon, France
Bauer, J. M., Grav, T., Blauvelt, E., et al. 2013, ApJ, 773, 22
Beer, E. H., Podolak, M., & Prialnik, D. 2006, Icarus, 180, 473
Biver, N. 1997, Ph.D. Thesis, University Paris 7
Biver, N., Bockelée-Morvan, D., Crovisier, J., et al. 1999, AJ, 118, 1850
Biver, N., Bockelée-Morvan, D., Colom, P., et al. 2002, Earth Moon Planets, 90, 5
Biver, N., Bockelée-Morvan, D., Crovisier, J., et al. 2007, Planet. Space Sci., 55, 1058
Biver, N., Bockelée-Morvan, D., Wiesemeyer, H., et al. 2008, Asteroids Comets Meteors 2008, 1405, 8146
Biver, N., Crovisier, J., Bockelée-Morvan, D., et al. 2012, A&A, 539, A68
Bocchio, M., Bianchi, A., & Abergel, S. 2016, VizieR Online Data Catalog: J/A+A/591/A117
Bockelée-Morvan, D., Crovisier, J., Mumma, M. J., & Weaver, H. A. 2004, Comets II, eds. M.C. Festou, H.U. Keller, and H.A. Weaver (Tucson: University of Arizona Press) 391
Bockelée-Morvan, D., Biver, N., Crovisier, J., et al. 2010 a, Bull. Amer. Astron. Soc. 42, 946
Bockelée-Morvan, D., Hartogh, P., Crovisier, J., et al. 2010 b, A&A, 518, A149
Bockelée-Morvan, D., Biver, N., Swinyard, B., et al. 2012, A&A, 544, A15
Bockelée-Morvan, D., Biver, N., Crovisier, J., et al. 2014, A&A, 562, A5
Bockelée-Morvan, D., Rinaldi, G., Erard, S., et al. 2017, MNRAS, 469, S443
Cochran, A. L., & Cochran, W. D. 1991, Icarus, 90, 172
Cowan, J. J., & Aâ Hearn, M.F. 1979, Moon Planets, 21, 155
Crifo, J. F., & Rodionov, A. V. 1997, Icarus, 127, 319
Crifo, J. F., Rodionov, A. V., & Bockelée-Morvan, D. 1999, Icarus, 138, 85
Crovisier, J., Biver, N., Bockelée-Morvan, D., et al. 1995, Icarus, 115, 213
Davies, J. K., Roush, T.L., Cruikshank, D.P., et al. 1997, Icarus, 127, 238
de Graauw, Th., Helmich, F.P., Phillips, T.G., et al. 2010, A&A, 518, L6
Dello Russo, N., Kawakita, H., Vervack, R. J., et al. 2016, Icarus, 278, 301
de Val-Borro, M., Hartogh, P., Crovisier, J., et al. 2010, A&A, 521, A50
de Val-Borro, M., Bockelée-Morvan, D., Jehin, E., et al. 2014, A&A, 564, A124
DiSanti, M. A., Bonev, B. P., Russo, N. D., et al. 2017, AJ, 154, 246