Nature and Landscape Conservation; Ecology; Global and Planetary Change
Abstract :
[en] Landslides triggered in mountainous areas can have catastrophic consequences, threaten human life, and cause billions of dollars in economic losses. Hence, it is imperative to map the areas susceptible to landslides to minimize their risk. Around Abbottabad, a large city in northern Pakistan, a large number of landslides can be found. This study aimed to map the landslide susceptibility over these regions in Pakistan by using three Machine Learning (ML) techniques, specifically Linear Regression (LiR), Logistic Regression (LoR), and Support Vector Machine (SVM). Several influencing factors were used to identify the potential landslide areas, including elevation, slope degree, slope aspect, general curvature, plan curvature, profile curvature, landcover classification system, Normalized Difference Water Index (NDWI), Normalized Difference Vegetation Index (NDVI), soil, lithology, fault density, topographic roughness index, and road density. The weights of these factors were calculated using ML techniques. The weightage overlay tool is adopted to map the final output. According to three ML models, lithology, NDWI, slope, and LCCS significantly impact landslide occurrence. The area under the ROC curve (AUC) is applied to validate the performance of models, and the results show the AUC value of LiR (88%) is better than SVM (86%) and LoR (85%) models. ML models and final susceptibility map gives good accuracy, which can be reliable for the results. The study’s outcome provides baselines for policymakers to propose adequate protection and mitigation measures against the landslides in the region, and any other researcher can adopt this methodology to map the landslide susceptibility in another area having similar characteristics.
Varnes D. Slope Movement Types and Processes Transp. Res. Board Spec. Rep. 1978 176 11 33
Farooq K. Rogers J.D. Ahmed M.F. Effect of Densification on the Shear Strength of Landslide Material: A Case Study from Salt Range, Pakistan Earth Sci. Res. 2015 4 113 125 10.5539/esr.v4n1p113
Das I. Stein A. Kerle N. Dadhwal V.K. Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models Geomorphology 2012 179 116 125 10.1016/j.geomorph.2012.08.004
Haque U. Blum P. da Silva P.F. Andersen P. Pilz J. Chalov S.R. Malet J.P. Auflič M.J. Andres N. Poyiadji E. et al. Fatal landslides in Europe Landslides 2016 13 1545 1554 10.1007/s10346-016-0689-3
Papoutsis I. Kontoes C. Alatza S. Apostolakis A. Loupasakis C. InSAR greece with parallelized persistent scatterer interferometry: A national ground motion service for big copernicus sentinel-1 data Remote Sens. 2020 12 3207 10.3390/rs12193207
USAID UCL Natural disasters in 2017: Lower mortality, higher cost Cent. Res. Epidemiol. Disasters 2018 Available online: https://reliefweb.int/report/world/cred-crunch-newsletter-issue-no-50-march-2018-natural-disasters-2017-lower-mortality (accessed on 24 April 2020)
Chen W. Chen Y. Tsangaratos P. Ilia I. Wang X. Combining evolutionary algorithms and machine learning models in landslide susceptibility assessments Remote Sens. 2020 12 3854 10.3390/rs12233854
Zillman J. The Physical impact of Disasters Natural Disaster Management. Leicester Ingleton J. Tudor Rose Holdings Ltd. Leicester, UK 1999 320
Feizizadeh B. Blaschke T. Landslide Risk Assessment Based on GIS Multi-Criteria Evaluation: A Case Study in Bostan-Abad County Iran J. Earth Sci. Eng. 2011 1 66 71
Tsironi V. Ganas A. Karamitros I. Efstathiou E. Koukouvelas I. Sokos E. Kinematics of Active Landslides in Achaia (Peloponnese, Greece) through InSAR Time Series Analysis and Relation to Rainfall Patterns Remote Sens. 2022 14 844 10.3390/rs14040844
Froude M.J. Petley D.N. Global fatal landslide occurrence from 2004 to 2016 Nat. Hazards Earth Syst. Sci. 2018 18 2161 2181 10.5194/nhess-18-2161-2018
Hobbs J.J. Salter C.L. Essentials of World Regional Geography Brooks/Cole Thomson Learning Melbourne, Australia 2006 9780534466008
Aslam B. Zafar A. Khalil U. Comparison of multiple conventional and unconventional machine learning models for landslide susceptibility mapping of Northern part of Pakistan Environ. Dev. Sustain. 2022 1 28 10.1007/s10668-022-02314-6
Mustafa Z.U. Ahmad S.R. Luqman M. Ahmad U. Khan S. Nawaz M. Javed A. Investigating Factors of Slope Failure for Different Landsliding Sites in Murree Area, Using Geomatics Techniques J. Geosci. Environ. Prot. 2015 3 39 45 10.4236/gep.2015.38004
Kamp U. Growley B.J. Khattak G.A. Owen L.A. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region Geomorphology 2008 101 631 642 10.1016/j.geomorph.2008.03.003
Wei Z.-L. Shang Y.-Q. Sun H.-Y. Xu H.-D. Wang D.-F. The effectiveness of a drainage tunnel in increasing the rainfall threshold of a deep-seated landslide Landslides 2019 16 1731 1744 10.1007/s10346-019-01241-4
Marjanović M. Advanced Methods for landslide Assessment Using GIS Ph.D. Thesis Palacký University Olomouc Olomouc, Czechia 2013 1 128
Kanwal S. Atif S. Shafiq M. GIS based landslide susceptibility mapping of northern areas of Pakistan, a case study of Shigar and Shyok Basins Geomat. Nat. Hazards Risk 2017 8 348 366 10.1080/19475705.2016.1220023
Ozdemir A. Altural T. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan mountains, SW Turkey J. Asian Earth Sci. 2013 64 180 197 10.1016/j.jseaes.2012.12.014
Guzzetti F. Carrara A. Cardinali M. Reichenbach P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy Geomorphology 1999 31 181 216 10.1016/S0169-555X(99)00078-1
Zêzere J.L. Pereira S. Melo R. Oliveira S.C. Garcia R.A.C. Mapping landslide susceptibility using data-driven methods Sci. Total Environ. 2017 589 250 267 10.1016/j.scitotenv.2017.02.188
Tariq A. Yan J. Gagnon A.S. Riaz Khan M. Mumtaz F. Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest Geo-Spat. Inf. Sci. 2022 1 19 10.1080/10095020.2022.2100287
Tariq A. Mumtaz F. Zeng X. Baloch M.Y.J. Moazzam M.F.U. Spatio-temporal variation of seasonal heat islands mapping of Pakistan during 2000–2019, using day-time and night-time land surface temperatures MODIS and meteorological stations data Remote Sens. Appl. Soc. Environ. 2022 27 100779 10.1016/j.rsase.2022.100779
Shah S.H.I.A. Jianguo Y. Jahangir Z. Tariq A. Aslam B. Integrated geophysical technique for groundwater salinity delineation, an approach to agriculture sustainability for Nankana Sahib Area, Pakistan Geomat. Nat. Hazards Risk 2022 13 1043 1064 10.1080/19475705.2022.2063077
Farhan M. Moazzam U. Rahman G. Munawar S. Tariq A. Safdar Q. Lee B. Trends of Rainfall Variability and Drought Monitoring Using Standardized Precipitation Index in a Scarcely Gauged Basin of Northern Pakistan Water 2022 14 1132 10.3390/w14071132
Ayalew L. Yamagishi H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan Geomorphology 2005 65 15 31 10.1016/j.geomorph.2004.06.010
Kouli M. Loupasakis C. Soupios P. Vallianatos F. Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece Nat. Hazards 2010 52 599 621 10.1007/s11069-009-9403-2
Feizizadeh B. Blaschke T. GIS-multicriteria decision analysis for landslide susceptibility mapping: Comparing three methods for the Urmia lake basin, Iran Nat. Hazards 2013 65 2105 2128 10.1007/s11069-012-0463-3
Ayalew L. Yamagishi H. Ugawa N. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan Landslides 2004 1 73 81 10.1007/s10346-003-0006-9
Sejrup H.P. Haflidason H. Flatebø T. Kristensen D.K. Grøsfjeld K. Larsen E. Late-glacial to Holocene environmental changes and climate variability: Evidence from Voldafjorden, western Norway J. Quat. Sci. 2001 16 181 198 10.1002/jqs.593
Alexakis D.D. Agapiou A. Tzouvaras M. Themistocleous K. Neocleous K. Michaelides S. Hadjimitsis D.G. Integrated use of GIS and remote sensing for monitoring landslides in transportation pavements: The case study of Paphos area in Cyprus Nat. Hazards 2014 72 119 141 10.1007/s11069-013-0770-3
Neaupane K.M. Piantanakulchai M. Analytic network process model for landslide hazard zonation Eng. Geol. 2006 85 281 294 10.1016/j.enggeo.2006.02.003
Hwang C.-L. Yoon K. Multiple Objective Decision Making-Methods and Applications Lect. Notes Econ. Math. Syst. 1981 1 1 358 10.1007/978-3-642-45511-7
Arabameri A. Pradhan B. Rezaei K. Conoscenti C. Gully erosion susceptibility mapping using GIS-based multi-criteria decision analysis techniques Catena 2019 180 282 297 10.1016/j.catena.2019.04.032
Bai S.B. Wang J. Lü G.N. Zhou P.G. Hou S.S. Xu S.N. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China Geomorphology 2010 115 23 31 10.1016/j.geomorph.2009.09.025
Corominas J. van Westen C. Frattini P. Cascini L. Malet J.P. Fotopoulou S. Catani F. Van Den Eeckhaut M. Mavrouli O. Agliardi F. et al. Recommendations for the quantitative analysis of landslide risk Bull. Eng. Geol. Environ. 2014 73 209 263 10.1007/s10064-013-0538-8
Chen W. Pourghasemi H.R. Kornejady A. Zhang N. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques Geoderma 2017 305 314 327 10.1016/j.geoderma.2017.06.020
Oh H.J. Lee S. Shallow landslide susceptibility modeling using the data mining models artificial neural network and boosted tree Appl. Sci. 2017 7 1000 10.3390/app7101000
Hong H. Pradhan B. Xu C. Bui D.T. Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines Catena 2015 133 266 281 10.1016/j.catena.2015.05.019
Pradhan B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS Comput. Geosci. 2013 51 350 365 10.1016/j.cageo.2012.08.023
Park S. Choi C. Kim B. Kim J. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea Environ. Earth Sci. 2013 68 1443 1464 10.1007/s12665-012-1842-5
Yao X. Tham L.G. Dai F.C. Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China Geomorphology 2008 101 572 582 10.1016/j.geomorph.2008.02.011
Bui D.T. Tuan T.A. Hoang N.D. Thanh N.Q. Nguyen D.B. Van Liem N. Pradhan B. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization Landslides 2017 14 447 458 10.1007/s10346-016-0711-9
Onagh M. Kumra V.K. Rai P.K. Landslide Susceptibility Mapping in a Part of Uttarkashi District (India) By Multiple Linear Regression Method Int. J. Geol. Earth Environ. Sci. 2012 2 102 120
Arabameri A. Pradhan B. Rezaei K. Sohrabi M. Kalantari Z. GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms J. Mt. Sci. 2019 16 595 618 10.1007/s11629-018-5168-y
Chen W. Peng J. Hong H. Shahabi H. Pradhan B. Liu J. Zhu A.X. Pei X. Duan Z. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China Sci. Total Environ. 2018 626 1121 1135 10.1016/j.scitotenv.2018.01.124 29898519
Meng Q. Miao F. Zhen J. Wang X. Wang A. Peng Y. Fan Q. GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: A case study from Wolong Giant Panda Natural Reserve, China Bull. Eng. Geol. Environ. 2016 75 923 944 10.1007/s10064-015-0786-x
Aslam B. Zafar A. Khalil U. Development of integrated deep learning and machine learning algorithm for the assessment of landslide hazard potential Soft Comput. 2021 25 13493 13512 10.1007/s00500-021-06105-5
Ballabio C. Sterlacchini S. Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy Math. Geosci. 2012 44 47 70 10.1007/s11004-011-9379-9
Onagh M. Kumra V. Rai P. Application of Multiple Linear Regression Model in Landslide Susceptibility Zonation Mapping the Case Study Narmab Basin Int. J. Geol. Earth Environ. Sci. 2012 2 87 101
Lee S. Min K. Statistical analysis of landslide susceptibility at Yongin, Korea Environ. Geol. 2001 40 1095 1113 10.1007/s002540100310
Qing F. Zhao Y. Meng X. Su X. Qi T. Yue D. Application of machine learning to debris flow susceptibility mapping along the China-Pakistan Karakoram Highway Remote Sens. 2020 12 2933 10.3390/rs12182933
Ali S. Biermanns P. Haider R. Reicherter K. Landslide susceptibility mapping by using a geographic information system (GIS) along the China-Pakistan Economic Corridor (Karakoram Highway), Pakistan Nat. Hazards Earth Syst. Sci. 2019 19 999 1022 10.5194/nhess-19-999-2019
Basharat M. Shah H.R. Hameed N. Landslide susceptibility mapping using GIS and weighted overlay method: A case study from NW Himalayas, Pakistan Arab. J. Geosci. 2016 9 292 10.1007/s12517-016-2308-y
Torizin J. Fuchs M. Awan A.A. Ahmad I. Akhtar S.S. Sadiq S. Razzak A. Weggenmann D. Fawad F. Khalid N. et al. Statistical landslide susceptibility assessment of the Mansehra and Torghar districts, Khyber Pakhtunkhwa Province, Pakistan Nat. Hazards 2017 89 757 784 10.1007/s11069-017-2992-2
Pakistan Bureau of Statistics Census Pakistan 2017 Available online: https://www.pbs.gov.pk/content/final-results-census-2017 (accessed on 7 May 2022)
Gansser A. Geology of the Himalayas Interscience Publishers London, UK New York, NY, USA Sydney, Australia 1964 (tr. Zurich)
Akhtar S. Rahim Y. Hu B. Tsang H. Ibrar K.M. Ullah M.F. Bute S.I. Stratigraphy and Structure of Dhamtaur Area, District Abbottabad, Eastern Hazara, Pakistan Open J. Geol. 2019 9 57 66 10.4236/ojg.2019.91005
Youssef A.M. Pourghasemi H.R. Pourtaghi Z.S. Al-Katheeri M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia Landslides 2016 13 839 856 10.1007/s10346-015-0614-1
Guzzetti F. Reichenbach P. Cardinali M. Galli M. Ardizzone F. Probabilistic landslide hazard assessment at the basin scale Geomorphology 2005 72 272 299 10.1016/j.geomorph.2005.06.002
Ismail N. Khattak N. Observed failure modes of unreinforced masonry buildings during the 2015 Hindu Kush earthquake Earthq. Eng. Eng. Vib. 2019 18 301 314 10.1007/s11803-019-0505-x
Wu Y. Ke Y. Chen Z. Liang S. Zhao H. Hong H. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping Catena 2020 187 104396 10.1016/j.catena.2019.104396
Khan H. Shafique M. Khan M.A. Bacha M.A. Shah S.U. Calligaris C. Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan Egypt. J. Remote Sens. Sp. Sci. 2019 22 11 24 10.1016/j.ejrs.2018.03.004
Wang Y. Fang Z. Hong H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China Sci. Total Environ. 2019 666 975 993 10.1016/j.scitotenv.2019.02.263
Reichenbach P. Rossi M. Malamud B.D. Mihir M. Guzzetti F. A review of statistically-based landslide susceptibility models Earth-Sci. Rev. 2018 180 60 91 10.1016/j.earscirev.2018.03.001
Riley S.J. DeGloria S.D. Elliot R. A Terrain Ruggedness that Quantifies Topographic Heterogeneity Intermt. J. Sci. 1999 5 23 27
Lee S. Sambath T. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models Environ. Geol. 2006 50 847 855 10.1007/s00254-006-0256-7
Dai F.C. Lee C.F. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong Geomorphology 2002 42 213 228 10.1016/S0169-555X(01)00087-3
Yesilnacar E. Topal T. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey) Eng. Geol. 2005 79 251 266 10.1016/j.enggeo.2005.02.002
Vapnik V. The support vector method of function estimation Nonlinear Modeling Springer Boston, MA, USA 1998 55 85 10.1007/978-1-4615-5703-6_3
Tariq A. Shu H. Kuriqi A. Siddiqui S. Gagnon A.S. Lu L. Linh N.T.T. Pham Q.B. Characterization of the 2014 Indus River Flood Using Hydraulic Simulations and Satellite Images Remote Sens. 2021 13 2053 10.3390/rs13112053
Tariq A. Shu H. Siddiqui S. Mousa B.G. Munir I. Nasri A. Waqas H. Lu L. Baqa M.F. Forest fire monitoring using spatial-statistical and Geo-spatial analysis of factors determining forest fire in Margalla Hills, Islamabad, Pakistan Geomat. Nat. Hazards Risk 2021 12 1212 1233 10.1080/19475705.2021.1920477
Waqas H. Lu L. Tariq A. Li Q. Baqa M.F. Xing J. Sajjad A. Flash Flood Susceptibility Assessment and Zonation Using an Integrating Analytic Hierarchy Process and Frequency Ratio Model for the Chitral District, Khyber Pakhtunkhwa, Pakistan Water 2021 13 1650 10.3390/w13121650
Fawcett T. An introduction to ROC analysis Pattern Recognit. Lett. 2006 27 861 874 10.1016/j.patrec.2005.10.010
Tariq A. Shu H. Siddiqui S. Imran M. Farhan M. Monitoring Land Use and Land Cover Changes Using Geospatial Techniques, A Case Study of Fateh Jang, Attock, Pakistan Geogr. Environ. Sustain. 2021 14 41 52 10.24057/2071-9388-2020-117
Tariq A. Shu H. Gagnon A.S. Li Q. Mumtaz F. Hysa A. Siddique M.A. Munir I. Assessing Burned Areas in Wildfires and Prescribed Fires with Spectral Indices and SAR Images in the Margalla Hills of Pakistan Forests 2021 12 1371 10.3390/f12101371
Vakhshoori V. Zare M. Is the ROC curve a reliable tool to compare the validity of landslide susceptibility maps? Geomat. Nat. Hazards Risk 2018 9 249 266 10.1080/19475705.2018.1424043
Tariq A. Shu H. CA-Markov chain analysis of seasonal land surface temperature and land use landcover change using optical multi-temporal satellite data of Faisalabad, Pakistan Remote Sens. 2020 12 3402 10.3390/rs12203402
Tariq A. Shu H. Siddiqui S. Munir I. Sharifi A. Li Q. Lu L. Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods J. For. Res. 2021 13 12 10.1007/s11676-021-01354-4
Kalantar B. Pradhan B. Amir Naghibi S. Motevalli A. Mansor S. Assessment of the effects of training data selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN) Geomat. Nat. Hazards Risk 2018 9 49 69 10.1080/19475705.2017.1407368