[en] We report the first emaravirus on an endemic plant of Aotearoa New Zealand that is, to the best of our knowledge, the country's first endemic virus characterised associated with an indigenous plant. The new-to-science virus was identified in the endemic karaka tree (Corynocarpus laevigatus), and is associated with chlorotic leaf spots, and possible feeding sites of the monophagous endemic karaka gall mite. Of the five negative-sense RNA genomic segments that were fully sequenced, four (RNA 1-4) had similarity to other emaraviruses while RNA 5 had no similarity with other viral proteins. A detection assay developed to amplify any of the five RNAs in a single assay was used to determine the distribution of the virus. The virus is widespread in the Auckland area, particularly in mature trees at Ōkahu Bay, with only occasional reports elsewhere in the North Island. Phylogenetic analysis revealed that its closest relatives are pear chlorotic leaf spot-associated virus and chrysanthemum mosaic-associated virus, which form a unique clade within the genus Emaravirus. Based on the genome structure, we propose this virus to be part of the family Emaravirus, but with less than 50% amino acid similarity to the closest relatives in the most conserved RNA 1, it clearly is a novel species. In consultation with mana whenua (indigenous Māori authority over a territory and its associated treasures), we propose the name Karaka Ōkahu purepure virus in te reo Māori (the Māori language) to reflect the tree from which it was isolated (karaka), a place where the virus is prevalent (Ōkahu), and the spotted symptom (purepure, pronounced pooray pooray) that this endemic virus appears to cause.
Rabbidge, Lee O; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand ; The School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
Blouin, Arnaud ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs ; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
Chooi, Kar Mun; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
Higgins, Colleen M; The School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
MacDiarmid, Robin M ; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand ; School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
Language :
English
Title :
Characterisation and Distribution of Karaka Ōkahu Purepure Virus-A Novel Emaravirus Likely to Be Endemic to New Zealand.
AUT - Auckland University of Technology PBCRC - Plant Biosecurity Cooperative Research Centre
Funding text :
Funding: The research was funded by the School of Science at Auckland University of Technology (AUT) and Plant & Food Research, including the Growing Futures Rejuvenating Crop Ecosystems programme. The Plant Biosecurity Cooperative Research Centre funded the small RNA sequencing and analysis (PBCRC2064).The research was funded by the School of Science at Auckland University of Technology (AUT) and Plant & Food Research, including the Growing Futures Rejuvenating Crop Ecosystems programme. The Plant Biosecurity Cooperative Research Centre funded the small RNA sequencing and analysis (PBCRC2064).
De Lange, P.J. Corynocarpus Laevigatus Fact Sheet (Content Continuously Updated). New Zealand Plant Conservation Network. Available online: https://www.nzpcn.org.nz/flora/species/corynocarpus-laevigatus/(accessed on 25 May 2021).
Campbell, D.J.; Atkinson, I.A. Depression of tree recruitment by the Pacific rat (Rattus exulans Peale) on New Zealand’s northern offshore islands. Biol. Conserv. 2002, 107, 19–35. [CrossRef]
Costall, J.A.; Carter, R.J.; Shimada, Y.; Anthony, D.; Rapson, G.L. The endemic tree Corynocarpus laevigatus (karaka) as a weedy invader in forest remnants of southern North Island, New Zealand. N. Z. J. Bot. 2006, 44, 5–22. [CrossRef]
Macaskill, J.J.; Manley-Harris, M.; Field, R.J. Quantification of nitropropanoyl glucosides in karaka nuts before and after treatment. Food Chem. 2015, 175, 543–548. [CrossRef]
Sawyer, S.; McFadgen, B.; Hughes, P. Karaka (Corynocarpus laevigatus J.R. et G. Forst.) in Wellington Conservancy (Excluding Chatham Islands); DOC Science Internal Series 101; Department of Conservation: Wellington, New Zealand, 2003; Volume 2, pp. 1–27.
Van Essen, R.; Rapson, G. Fruit size of karaka (Corynocarpus laevigatus) in relation to potential selection by Maori. N. Z. Bot. Soc. Newsl. 2005, 81, 13–16.
Brown, P.; Newstrom-Lloyd, L.E.; Foster, B.J.; Badger, P.H.; McLean, J.A. Winter 2016 honey bee colony losses in New Zealand. J. Apic. Res. 2018, 57, 278–291. [CrossRef]
Hunt, H.; Cave, N.; Gartrell, B.; Cogger, N.; Petersen, J.; Roe, W. An epidemiological investigation of an idiopathic myopathy in hunting dogs in New Zealand. N. Z. Vet. J. 2018, 66, 199–204. [CrossRef] [PubMed]
Leach, H.; Stowe, C. Oceanic arboriculture at the margins-The case of the Karaka (Corynocarpus laevigatus) in Aotearoa. J. Polyn. Soc. 2005, 114, 7–27.
Ridley, G.S.; Bain, J.; Bulman, L.S.; Dick, M.A.; Kay, M.K. Threats to New Zealand’s indigenous forests from exotic pathogens and pests. Sci. Conserv. 2000, 142, 1–67.
Ashby, J. Infection of karaka (Corynocarpus laevigatus JR & G. Forst.) by cucumber mosaic virus. N. Z. J. Agric. Res. 1977, 20, 533–534.
Veerakone, S.; Tang, J.Z.; Ward, L.I.; Liefting, L.W.; Perez-Egusquiza, Z.; Lebas, B.S.M.; Delmiglio, C.; Fletcher, J.D.; Guy, P.L. A review of the plant virus, viroid, liberibacter and phytoplasma records for New Zealand. Australas. Plant Pathol. 2015, 44, 463–514. [CrossRef]
Xue, X.F.; Zhang, Z.Q. New Zealand Eriophyoidea (Acari: Prostigmata): An update with descriptions of one new genus and six new species. Zootaxa 2008, 1962, 1–32. [CrossRef]
Kormelink, R.; Verchot, J.; Tao, X.; Desbiez, C. The Bunyavirales: The Plant-Infecting Counterparts. Viruses 2021, 13, 842. [CrossRef]
Kulkarni, N.K.; Kumar, P.L.; Muniyappa, V.; Jones, A.T.; Reddy, D.V.R. Transmission of pigeonpea sterility mosaic virus by the eriophyid mite, Aceria cajani Acari, Arthropoda. Plant Dis. 2002, 86, 1297–1302. [CrossRef]
Kumar, P.L.; Jones, A.T.; Reddy, D.V.R. A novel mite-transmitted virus with a divided RNA genome closely associated with pigeonpea sterility mosaic disease. Phytopathology 2003, 93, 71–81. [CrossRef]
Di Bello, P.L.; Thekke-Veetil, T.; Druciarek, T.; Tzanetakis, I.E. Transmission attributes and resistance to rose rosette virus. Plant Pathol. 2018, 67, 499–504. [CrossRef]
Hassan, M.; Di Bello, P.L.; Keller, K.E.; Martin, R.R.; Sabanadzovic, S.; Tzanetakis, I.E. A new, widespread emaravirus discovered in blackberry. Virus Res. 2017, 235, 1–5. [CrossRef] [PubMed]
Kubota, K.; Usugi, T.; Tomitaka, Y.; Shimomoto, Y.; Takeuchi, S.; Kadono, F.; Yanagisawa, H.; Chiaki, Y.; Tsuda, S. Perilla mosaic virus is a highly divergent emaravirus transmitted by Shevtchenkella sp. (acari: Eriophyidae). Phytopathology 2020, 110, 1352–1361. [CrossRef]
Martin, N.A. Karaka gall mite-Aculus corynocarpi. In Interesting Insects and Other Invertebrates; New Zealand Arthropod Factsheet Series 2017, Number 87; Manaaki Whenua-Landcare Research and Plant & Food Research: Lincoln, New Zealand, 2017.
Mielke-Ehret, N.; Mühlbach, H.P. Emaravirus: A novel genus of multipartite, negative strand RNA plant viruses. Viruses 2012, 4, 1515–1536. [CrossRef]
Mielke, N.; Muehlbach, H.-P. A novel, multipartite, negative-strand RNA virus is associated with the ringspot disease of European mountain ash (Sorbus aucuparia L.). J. Gen. Virol. 2007, 88, 1337–1346. [CrossRef] [PubMed]
Guo, J.; Wang, Y.; Wang, G.; Hong, J.; Yang, Z.; Bai, J.; Hong, N. Molecular characteristics of Jujube yellow mottle-associated virus infecting Jujube (Ziziphus jujube Mill.) Grown at Aksu in Xinjiang of China. Viruses 2020, 13, 25. [CrossRef] [PubMed]
Peracchio, C.; Forgia, M.; Chiapello, M.; Vallino, M.; Turina, M.; Ciuffo, M. A complex virome including two distinct emaraviruses associated with virus-like symptoms in Camellia japonica. Virus Res. 2020, 286, 197964. [CrossRef]
ICTV. International Committee on Taxonomy Virus (ICTV): 2019 Release. 2019. Retrieved from Washington, DC, USA. Available online: https://talk.ictvonline.org/taxonomy/(accessed on 31 March 2021).
Blouin, A.G.; Ross, H.A.; Hobson-Peters, J.; O’Brien, C.A.; Warren, B.; MacDiarmid, R. A new virus discovered by immunocapture of double-stranded RNA, a rapid method for virus enrichment in metagenomic studies. Mol. Ecol. Resour. 2016, 16, 1255–1263. [CrossRef]
Podolyan, A.; Blouin, A.G.; Dhami, M.K.; Veerakone, S.; MacDiarmid, R. First report of Ageratum latent virus in Veronica sp. Australas. Plant Dis. Notes 2020, 15, 39. [CrossRef]
White, E.J.; Venter, M.; Hiten, N.F.; Burger, J.T. Modified cetyltrimethylammonium bromide method improves robustness and versatility: The benchmark for plant RNA extraction. Biotech. J. 2008, 3, 1424–1428. [CrossRef]
Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [CrossRef]
Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [CrossRef]
Gupta, R.; Jung, E.; Brunak, S. Prediction of N-glycosylation sites in human proteins. NetNGlyc 1.0. 2004. Available online: http://www.cbs.dtu.dk/services/NetNGlyc/(accessed on 25 May 2021).
Steentoft, C.; Vakhrushev, S.Y.; Joshi, H.J.; Kong, Y.; Vester-Christensen, M.B.; Schjoldager, K.T.; Lavrsen, K.; Dabelsteen, S.; Pedersen, N.B.; Marcos-Silva, L.; et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013, 32, 1478–1488. [CrossRef] [PubMed]
Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [CrossRef] [PubMed]
Hofmann, K. TMbase-A database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 1993, 374, 166.
Emanuelsson, O.; Brunak, S.; von Heijne, G.; Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007, 2, 953–971. [CrossRef]
Lupas, A.; Van Dyke, M.; Stock, J. Predicting coiled coils from protein sequences. Science 1991, 252, 1162–1164. [CrossRef]
Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 3, 1547–1549. [CrossRef]
Le, S.Q.; Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008, 25, 1307–1320. [CrossRef]
Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [CrossRef] [PubMed]
QGIS. QGIS Geographic Information System. 2019. Available online: http://qgis.org (accessed on 25 May 2021).
Chooi, K.M.; Cohen, D.; Pearson, M.N. Generic and sequence-variant specific molecular assays for the detection of the highly variable Grapevine leafroll-associated virus 3. J. Virol. Methods 2013, 189, 20–29. [CrossRef]
Elbeaino, T.; Whitfield, A.; Sharma, M.; Digiaro, M. Emaravirus-specific degenerate PCR primers allowed the identification of partial RNA-dependent RNA polymerase sequences of Maize red stripe virus and Pigeonpea sterility mosaic virus. J. Virol. Methods 2013, 188, 37–40. [CrossRef] [PubMed]
Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [CrossRef] [PubMed]
Di Bello, P.L.; Laney, A.G.; Druciarek, T.; Ho, T.; Gergerich, R.C.; Keller, K.E.; Martin, R.R.; Tzanetakis, I.E. A novel emaravirus is associated with redbud yellow ringspot disease. Virus Res. 2016, 222, 41–47. [CrossRef] [PubMed]
Elbeaino, T.; Digiaro, M.; Martelli, G.P. Complete nucleotide sequence of four RNA segments of fig mosaic virus. Arch. Virol. 2009, 154, 1719–1727. [CrossRef] [PubMed]
McGavin, W.J.; Mitchell, C.; Cock, P.J.; Wright, K.M.; MacFarlane, S.A. Raspberry leaf blotch virus, a putative new member of the genus Emaravirus, encodes a novel genomic RNA. J. Gen. Virol. 2012, 93, 430–437. [CrossRef]
Tatineni, S.; McMechan, A.J.; Wosula, E.N.; Wegulo, S.N.; Graybosch, R.A.; French, R.; Hein, G.L. An eriophyid mite-transmitted plant virus contains eight genomic RNA segments with unusual heterogeneity in the nucleocapsid protein. J. Virol. 2014, 88, 11834–11845. [CrossRef] [PubMed]
Yang, C.; Zhang, S.; Han, T.; Fu, J.; Di Serio, F.; Cao, M. Identification and characterization of a novel emaravirus associated with jujube (Ziziphus jujuba Mill.) yellow mottle disease. Front. Microbiol. 2019, 10, 1417. [CrossRef]
Laney, A.G.; Keller, K.E.; Martin, R.R.; Tzanetakis, I.E. A discovery 70 years in the making: Characterization of the Rose rosette virus. J. Gen. Virol. 2011, 92, 1727–1732. [CrossRef] [PubMed]
Rehanek, M.; von Bargen, S.; Bandte, M.; Karlin, D.G.; Büttner, C. A novel emaravirus comprising five RNA segments is associated with ringspot disease in oak. Arch. Virol. 2021, 166, 987–990. [CrossRef] [PubMed]
Rumbou, A.; Candresse, T.; von Bargen, S.; Büttner, C. Next-generation sequencing reveals a novel emaravirus in diseased maple trees from a German urban forest. Front. Microbiol. 2021, 11, 621179. [CrossRef]
Wang, Y.; Zhai, L.; Wen, S.; Yang, Z.; Wang, G.; Hong, N. Molecular characterization of a novel emaravirus infecting Actinidia spp. in China. Virus Res. 2020, 275, 197736. [CrossRef]
von Bargen, S.; Dieckmann, H.L.; Candresse, T.; Mühlbach, H.P.; Roßbach, J.; Büttner, C. Determination of the complete genome sequence of European mountain ash ringspot-associated emaravirus from Sorbus intermedia reveals two additional genome segments. Arch. Virol. 2019, 164, 1937–1941. [CrossRef]
Di Bello, P.L.; Ho, T.; Tzanetakis, I.E. The evolution of emaraviruses is becoming more complex: Seven segments identified in the causal agent of Rose rosette disease. Virus Res. 2015, 210, 241–244. [CrossRef] [PubMed]
Elbeaino, T.; Digiaro, M.; Mielke-Ehret, N.; Mühlbach, H.-P.; Martelli, G.P. ICTV virus taxonomy profile: Fimoviridae. J. Gen. Virol. 2018, 99, 1478–1479. [CrossRef] [PubMed]
Gupta, A.K.; Hein, G.L.; Graybosch, R.A.; Tatineni, S. Octapartite negative-sense RNA genome of High Plains wheat mosaic virus encodes two suppressors of RNA silencing. Virology 2018, 518, 152–162. [CrossRef] [PubMed]
Gupta, A.K.; Hein, G.L.; Tatineni, S. P7 and P8 proteins of High Plains wheat mosaic virus, a negative-strand RNA virus, employ distinct mechanisms of RNA silencing suppression. Virology 2019, 535, 20–31. [CrossRef] [PubMed]
Liu, H.; Wang, G.; Yang, Z.; Wang, Y.; Zhang, Z.; Li, L.; Waqas, M.; Hong, N.; Liu, H.; Wang, G.; et al. Identification and characterization of a pear chlorotic leaf spot-associated virus, a novel Emaravirus associated with a severe disease of pear trees in China. Plant Dis. 2020, 104, 2786–2798. [CrossRef]
Atherton, R.; Lockhart, P.; McLenachan, P.; de Lange, P.; Wagstaff, S.; Shepherd, L.A. A molecular investigation into the origin and relationships of karaka/kōpi (Corynocarpus laevigatus) in New Zealand. J. R. Soc. N. Z. 2015, 45, 212–220. [CrossRef]
Kubota, K.; Chiaki, Y.; Yanagisawa, H.; Takeyama, S.; Suzuki, R.; Kohyama, M.; Horikawa, T.; Toda, S.; Kadono, F. First report of pear chlorotic leaf spot-associated virus on Japanese and European pears in Japan and its detection from an eriophyid mite. Plant Dis. 2021, 105, 1234. [CrossRef]
Dolja, V.V.; Krupovic, M.; Koonin, E.V. Deep roots and splendid boughs of the global plant virome. Annu. Rev. Phytopathol. 2020, 58, 23–53. [CrossRef]
Zhou, X.; Lin, W.; Sun, K.; Wang, S.; Zhou, X.; Jackson, A.O.; Li, Z. Specificity of plant rhabdovirus cell-to-cell movement. J. Virol. 2019, 93, e00296-19. [CrossRef]
Guterres, A.; de Oliveira, R.C.; Fernandes, J.; de Lemos, E.R.S.; Schrago, C.G. New bunya-like viruses: Highlighting their relations. Infect. Genet. Evol. 2017, 49, 164–173. [CrossRef] [PubMed]
Holmes, E.C. Molecular clocks and the puzzle of RNA virus origins. J. Virol. 2003, 77, 3893–3897. [CrossRef] [PubMed]