[en] Crystalline materials with pore dimensions comparable to the kinetic diameters of the guest molecules are attractive for their potential use in adsorption and separation applications. The nanoporous γ-Mg(BH4)2 features one-dimensional channels matching this criterion for Kr uptake, which has been probed using synchrotron powder diffraction at various pressures and temperatures. It results in two coexisting crystalline phases with the limiting composition Mg(BH4)2·0.66Kr expecting the highest Kr content (50.7 wt % in the crystalline phase) reported for porous materials. Quasi-equilibrium isobars built from Rietveld refinements of Kr site occupancies were rationalized with a noncooperative lattice gas model, yielding the values of the thermodynamic parameters. The latter were independently confirmed from Kr fluorescence. We have also parameterized the pronounced kinetic hysteresis with a modified mean-field model adopted for the Arrhenius kinetics.
Disciplines :
Chemistry
Author, co-author :
Dovgaliuk, Iurii ; Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility , 71 avenue des Martyrs , Grenoble 38000 , France ; Institut des Matériaux Poreux de Paris, UMR 8004 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris , PSL Université , Paris 75005 , France
Dyadkin, Vadim; Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility , 71 avenue des Martyrs , Grenoble 38000 , France
Filinchuk, Yaroslav ; Institute of Condensed Matter and Nanosciences , Université Catholique de Louvain , Place L. Pasteur 1 , B-1348 Louvain-la-Neuve , Belgium
Chernyshov, Dmitry; Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility , 71 avenue des Martyrs , Grenoble 38000 , France
Language :
English
Title :
Non-Isothermal Kinetics of Kr Adsorption by Nanoporous γ-Mg(BH4)2 from in Situ Synchrotron Powder Diffraction.
Kerry, F. G. Industrial Gas Handbook: Gas Separation and Purification; CRC Press: 2007.
Chen, L.; Reiss, P. S.; Chong, S. Y.; Holden, D.; Jelfs, K. E.; Hasell, T.; Little, M. A.; Kewley, A.; Briggs, M. E.; Stephenson, A.; Thomas, K. M.; Armstrong, J. A.; Bell, J.; Busto, J.; Noel, R.; Liu, J.; Strachan, D. M.; Thallapally, P. K.; Cooper, A. I. Separation of Rare Gases and Chiral Molecules by Selective Binding in Porous Organic Cages. Nat. Mater. 2014, 13, 954-960, 10.1038/nmat4035
Liu, J.; Thallapally, P. K.; Strachan, D. Metal-Organic Frameworks for Removal of Xe and Kr from Nuclear Fuel Reprocessing Plants. Langmuir 2012, 28, 11584-11589, 10.1021/la301870n
Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444, 10.1126/science.1230444
Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/Vapour Separation Using Ultra-Microporous Metal-Organic Frameworks: Insights into the Structure/Separation Relationship. Chem. Soc. Rev. 2017, 46, 3402-3430, 10.1039/C7CS00153C
Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; van Duyne, R. P.; Hupp, J. T. Metal-Organic Framework Materials as Chemical Sensors. Chem. Rev 2012, 112, 1105-1125, 10.1021/cr200324t
Doonan, C. J.; Sumby, C. J. Metal-Organic Framework Catalysis. CrystEngComm 2017, 19, 4044-4048, 10.1039/C7CE90106B
Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal Organic Frameworks in Biomedicine. Chem. Rev. 2012, 1232-1268, 10.1021/cr200256v
Banerjee, D.; Simon, C. M.; Elsaidi, S. K.; Haranczyk, M.; Thallapally, P. K. Xenon Gas Separation and Storage Using Metal-Organic Frameworks. Chem 2018, 4, 466-494, 10.1016/j.chempr.2017.12.025
Wang, H.; Yao, K.; Zhang, Z.; Jagiello, J.; Gong, Q.; Han, Y.; Li, J. The First Example of Commensurate Adsorption of Atomic Gas in a MOF and Effective Separation of Xenon from Other Noble Gases. Chem. Sci. 2014, 5, 620-624, 10.1039/C3SC52348A
Chen, X.; Plonka, A. M.; Banerjee, D.; Krishna, R.; Schaef, H. T.; Ghose, S.; Thallapally, P. K.; Parise, J. B. Direct Observation of Xe and Kr Adsorption in a Xe-Selective Microporous Metal-Organic Framework. J. Am. Chem. Soc. 2015, 137, 7007-7010, 10.1021/jacs.5b02556
Banerjee, D.; Simon, C. M.; Plonka, A. M.; Motkuri, R. K.; Liu, J.; Chen, X.; Smit, B.; Parise, J. B.; Haranczyk, M.; Thallapally, P. K. Metal-Organic Framework with Optimally Selective Xenon Adsorption and Separation. Nat. Commun 2016, 7, ncomms11831, 10.1038/ncomms11831
Mohamed, M. H.; Elsaidi, S. K.; Pham, T.; Forrest, K. A.; Schaef, H. T.; Hogan, A.; Wojtas, L.; Xu, W.; Space, B.; Zaworotko, M. J.; Thallapally, P. K. Hybrid Ultra-Microporous Materials for Selective Xenon Adsorption and Separation. Angew. Chem., Int. Ed. 2016, 55, 8285-8289, 10.1002/anie.201602287
Perry, J. J., IV; Teich-Mcgoldrick, S. L.; Meek, S. T.; Greathouse, J. A.; Haranczyk, M.; Allendorf, M. D. Noble Gas Adsorption in Metal-Organic Frameworks Containing Open Metal Sites. J. Phys. Chem. C 2014, 118, 11685-11698, 10.1021/jp501495f
Sikora, B. J.; Wilmer, C. E.; Greenfield, M. L.; Snurr, R. Q. Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal-organic frameworks. Chem. Sci. 2012, 3, 2217-2223, 10.1039/c2sc01097f
Witman, M.; Ling, S.; Jawahery, S.; Boyd, P. G.; Haranczyk, M.; Slater, B.; Smit, B. The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials. J. Am. Chem. Soc. 2017, 139, 5547-5557, 10.1021/jacs.7b01688
Filinchuk, Y.; Richter, B.; Jensen, T. R.; Dmitriev, V.; Chernyshov, D.; Hagemann, H. Porous and Dense Magnesium Borohydride Frameworks: Synthesis, Stability, and Reversible Absorption of Guest Species. Angew. Chem., Int. Ed. 2011, 50, 11162-11166, 10.1002/anie.201100675
Stadie, N. P.; Callini, E.; Mauron, P.; Borgschulte, A.; Züttel, A. Supercritical Nitrogen Processing for the Purification of Reactive Porous Materials. J. Visualized Exp. 2015, 99, e52817 10.3791/52817
Ban, V.; Soloninin, A. V.; Skripov, A. V.; Hadermann, J.; Abakumov, A.; Filinchuk, Y. Pressure-Collapsed Amorphous Mg(BH4)2: An Ultradense Complex Hydride Showing a Reversible Transition to the Porous Framework. J. Phys. Chem. C 2014, 118, 23402-23408, 10.1021/jp507286m
Dovgaliuk, I.; Nouar, F.; Serre, C.; Filinchuk, Y.; Chernyshov, D. Cooperative Adsorption by Porous Frameworks: Diffraction Experiment and Phenomenological Theory. Chem.-Eur. J. 2017, 23, 17714-17720, 10.1002/chem.201702707
Favre-Nicolin, V.; Černý, R. FOX, "Free Objects for Crystallography": A Modular Approach to Ab Initio Structure Determination from Powder Diffraction. J. Appl. Crystallogr. 2002, 35, 734-743, 10.1107/S0021889802015236
Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B 1993, 192, 55-69, 10.1016/0921-4526(93)90108-I
Belkly, A.; Helderman, M.; Karen, V. L.; Ulkch, P. New Developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in Support of Materials Research and Design. Acta Cryst. 2002, 58, 364-369, 10.1107/S0108768102006948
Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Cryst. 2016, 72, 171-179, 10.1107/S2052520616003954
Patil, R. S.; Banerjee, D.; Simon, C. M.; Atwood, J. L.; Thallapally, P. K. Noria: A Highly Xe-Selective Nanoporous Organic Solid. Chem.-Eur. J. 2016, 22, 12618-12623, 10.1002/chem.201602131
Hulvey, Z.; Lawler, K. V.; Qiao, Z.; Zhou, J.; Fairen-Jimenez, D.; Snurr, R. Q.; Ushakov, S. V.; Navrotsky, A.; Brown, C. M.; Forster, P. M. Noble Gas Adsorption in Copper Trimesate, HKUST-1: An Experimental and Computational Study. J. Phys. Chem. C 2013, 117, 20116-20126, 10.1021/jp408034u
Ravikovitch, P. I.; Neimark, A. V. Diffusion-Controlled Hysteresis. Adsorption 2005, 11, 265-270, 10.1007/s10450-005-5935-2
Bearden, J. A.; Burr, A. F. Reevaluation of X-Ray Atomic Energy Levels. Rev. Mod. Phys. 1967, 39, 125-142, 10.1103/RevModPhys.39.125
Vyazovkin, S.; Wight, C. A. Isothermal and Non-Isothermal Kinetics of Thermally Stimulated Reactions of Solids. Int. Rev. Phys. Chem. 1998, 17, 407-433, 10.1080/014423598230108
Khawam, A.; Flanagan, D. R. Solid-State Kinetic Models: Basics and Mathematical Fundamentals. J. Phys. Chem. B 2006, 110, 17315-17328, 10.1021/jp062746a
Klinduhov, N.; Chernyshov, D.; Boukheddaden, K. Choice of Dynamics for Spin-Crossover Systems. Phys. Rev. B 2010, 81, 094408 10.1103/PhysRevB.81.094408
Soloninin, A. V.; Babanova, O. A.; Skripov, A. V.; Hagemann, H.; Richter, B.; Jensen, T. R.; Filinchuk, Y. NMR Study of Reorientational Motion in Alkaline-Earth Borohydrides: β and γPhases of Mg(BH4)2 and α and β Phases of Ca(BH4)2. J. Phys. Chem. C 2012, 116, 4913-4920, 10.1021/jp210509g
Skripov, A. V.; Soloninin, A. V.; Rude, L. H.; Jensen, T. R.; Filinchuk, Y. Nuclear Magnetic Resonance Studies of Reorientational Motion and Li Diffusion in LiBH4-LiI Solid Solutions. J. Phys. Chem. C 2012, 116, 26177-26184, 10.1021/jp3080892
Skripov, A. V.; Soloninin, A. V.; Ley, M. B.; Jensen, T. R.; Filinchuk, Y. Nuclear Magnetic Resonance Studies of BH4 Reorientations and Li Diffusion in LiLa(BH4)3Cl. J. Phys. Chem. C 2013, 117, 14965-14972, 10.1021/jp403746m
Corey, R. L.; Shane, D. T.; Bowman, R. C., Jr.; Conradi, M. S. Atomic Motions in LiBH4 by NMR. J. Phys. Chem. C 2008, 112, 18706-18710, 10.1021/jp807910p
Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Stepanov, A. P. Nuclear Magnetic Resonance Study of Li and H Diffusion in the Higherature Solid Phase of LiBH4. J. Solid State Chem. 2009, 182, 2357-2361, 10.1016/j.jssc.2009.06.023
Shane, D. T.; Bowman, R. C., Jr.; Conradi, M. S. Exchange of Hydrogen Atoms between BH4 in LiBH4. J. Phys. Chem. C 2009, 113, 5039-5042, 10.1021/jp900768t
Skripov, A. V.; Soloninin, A. V.; Filinchuk, Y.; Chernyshov, D. Nuclear Magnetic Resonance Study of the Rotational Motion and the Phase Transition in LiBH4. J. Phys. Chem. C 2008, 112, 18701-18705, 10.1021/jp806705q
Dyadkin, V.; Pattison, P.; Dmitriev, V.; Chernyshov, D. A New Multipurpose Diffractometer PILATUS@SNBL. J. Synchrotron Radiat. 2016, 23, 825-829, 10.1107/S1600577516002411
Ashiotis, G.; Deschildre, A.; Nawaz, Z.; Wright, J. P.; Karkoulis, D.; Picca, F. E.; Kieffer, J. The Fast Azimuthal Integration Python Library: PyFAI. J. Appl. Crystallogr. 2015, 48, 510-519, 10.1107/S1600576715004306