commensal interaction; epiphyte; modularity; nestedness; specialization; Forestry; Ecology; Global and Planetary Change; Nature and Landscape Conservation; Environmental Science (miscellaneous)
Abstract :
[en] Ecological networks are commonly applied to depict general patterns of biotic interactions, which provide tools to understand the mechanism of community assembly. Commensal interactions between epiphytes and their hosts are a major component of species interactions in forest canopies; however, few studies have investigated species assemblage patterns and network structures of epiphyte–host interactions, particularly non-vascular epiphytes in different types of forest. To analyze the characteristics of network structures between epiphytes and their hosts, composition and distribution of epiphytic bryophytes were investigated from 138 host individuals using canopy cranes in a tropical lowland seasonal rain forest (TRF) and a subtropical montane moist evergreen broad-leaved forest (STF), in Southwest China. We structured binary networks between epiphytic bryophytes and their hosts in these two forests, which presented 329 interactions in the TRF and 545 interactions in the STF. Compared to TRF, the bryophyte–host plant networks were more nested but less modular in the STF. However, both forests generally exhibited a significantly nested structure with low levels of specialization and modularity. The relatively high nestedness may stabilize the ecological networks between epiphytic bryophytes and their hosts. Nevertheless, the low modularity in epiphyte–host networks could be attributed to the lack of co-evolutionary processes, and the low degree of specialization suggests that epiphytes are less likely to colonize specific host species. Vertical distribution of the bryophyte species showed structured modules in the tree basal and crown zones, probably attributing to the adaptation to microclimates within a host individual. This study highlights the nested structure of commensal interaction between epiphytic bryophytes and host trees, and provides a scientific basis to identify key host tree species for conservation and management of biodiversity in forest ecosystems.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Hu, Hai-Xia ✱; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China ; University of Chinese Academy of Sciences, Beijing, China ; Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
Quan, Dong-Li; Center for Integrative Conservation, Southeast Asia Biodiversity Research Institute, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
Nakamura, Akihiro; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China ; Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
Song, Liang; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China ; Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China ; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, China
✱ These authors have contributed equally to this work.
Language :
English
Title :
Structuring Interaction Networks Between Epiphytic Bryophytes and Their Hosts in Yunnan, SW China
This study was supported by the National Natural Science Foundation of China (Nos. 32171529 and 31670452), the Natural Science Foundation of Yunnan Province (No. 202101AT070059), the CAS “Light of West China” Program, the Lancang-Mekong Cooperation (LMC) Special Fund (Biodiversity Monitoring and Network Construction along Lancang-Mekong River Basin Project), the CAS 135 Program (Nos. 2017XTBG-F03 and 2017XTBG-F01), the candidates of the Young and Middle-Aged Academic Leaders of Yunnan Province (No. 2019HB040), and the Yunnan Ten Thousand Plan Young and Elite Talents Project (YNWR-QNBJ-2020-066).This study was supported by the National Natural Science Foundation of China (Nos. 32171529 and 31670452), the Natural Science Foundation of Yunnan Province (No. 202101AT070059), the CAS ?Light of West China? Program, the Lancang-Mekong Cooperation (LMC) Special Fund (Biodiversity Monitoring and Network Construction along Lancang-Mekong River Basin Project), the CAS 135 Program (Nos. 2017XTBG-F03 and 2017XTBG-F01), the candidates of the Young and Middle-Aged Academic Leaders of Yunnan Province (No. 2019HB040), and the Yunnan Ten Thousand Plan Young and Elite Talents Project (YNWR-QNBJ-2020-066).
Agglael Vergara-Torres C. Carmen Pacheco-Alvarez M. Flores-Palacios A. (2010). Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. J. Trop. Ecol. 26 563–570. 10.1017/s0266467410000349
Almeida-Neto M. Guimaraes P. Guimaraes P. R. Jr. Loyola R. D. Ulrich W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117 1227–1239. 10.1111/j.0030-1299.2008.16644.x
Arthur R. (2020). Modularity and projection of bipartite networks. Phys. A-Stat. Mech. Appl. 549:124341. 10.1016/j.physa.2020.124341
Barber M. J. (2007). Modularity and community detection in bipartite networks. Phys. Rev. E 76:066102. 10.1103/PhysRevE.76.066102 18233893
Baumgartner M. T. (2020). Connectance and nestedness as stabilizing factors in response to pulse disturbances in adaptive antagonistic networks. J. Theor. Biol. 486:110073. 10.1016/j.jtbi.2019.110073 31705878
Blick R. Burns K. C. (2009). Network properties of arboreal plants: are epiphytes, mistletoes and lianas structured similarly? Perspect. Plant Ecol. Evol. Syst. 11 41–52. 10.1016/j.ppees.2008.10.002
Bluethgen N. (2010). Why network analysis is often disconnected from community ecology: a critique and an ecologist’s guide. Basic Appl. Ecol. 11 185–195. 10.1016/j.baae.2010.01.001
Bluthgen N. Menzel F. Bluthgen N. (2006). Measuring specialization in species interaction networks. BMC Ecol. 6:9. 10.1186/1472-6785-6-9 16907983
Borrett S. R. Moody J. Edelmann A. (2014). The rise of network ecology: maps of the topic diversity and scientific collaboration. Ecol. Model. 293 111–127. 10.1016/j.ecolmodel.2014.02.019
Burns K. C. (2007). Network properties of an epiphyte metacommunity. J. Ecol. 95 1142–1151. 10.1111/j.1365-2745.2007.01267.x
Burns K. C. Zotz G. (2010). A hierarchical framework for investigating epiphyte assemblages: networks, meta-communities, and scale. Ecology 91 377–385. 10.1890/08-2004.1
Calatayud J. Madrigal-Gonzalez J. Gianoli E. Hortal J. Herrero A. (2017). Uneven abundances determine nestedness in climbing plant-host interaction networks. Perspect. Plant Ecol. Evol. Syst. 26 53–59. 10.1016/j.ppees.2017.04.003
Ceballos S. J. Chacoff N. P. Malizia A. (2016). Interaction network of vascular epiphytes and trees in a subtropical forest. Acta Oecol. Int. J. Ecol. 77 152–159. 10.1016/j.actao.2016.10.007
Costa A. Romano A. Rosa G. Salvidio S. (2021). Weighted individual-resource networks in prey-predator systems: the role of prey availability on the emergence of modular structures. Integr. Zool. 1–13. 10.1111/1749-4877.12520 33415838
Coyle J. R. (2017). Intraspecific variation in epiphyte functional traits reveals limited effects of microclimate on community assembly in temperate deciduous oak canopies. Oikos 126 111–120. 10.1111/oik.03239
Csardi G. Nepisz T. (2006). The igraph software package for complex network research. Int. J. Complex Syst. 1695 1–9.
de Oliveira H. C. de Oliveira S. M. (2016). Vertical distribution of epiphytic bryophytes in Atlantic forest fragments in northeastern Brazil. Acta Bot. Brasil. 30 609–617. 10.1590/0102-33062016abb0303
Dormann C. F. Strauss R. (2014). A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5 90–98. 10.1111/2041-210x.12139
Dunne J. A. Williams R. J. Martinez N. D. (2002). Food-web structure and network theory: the role of connectance and size. Proc. Natl. Acad. Sci. U.S.A. 99 12917–12922. 10.1073/pnas.192407699 12235364
Fontaine C. Guimaraes P. R. Jr. Kefi S. Loeuille N. Memmott J. van der Putten W. H. et al. (2011). The ecological and evolutionary implications of merging different types of networks. Ecol. Lett. 14 1170–1181. 10.1111/j.1461-0248.2011.01688.x 21951949
Fontúrbel F. E. Osorio F. Riffo-Donoso V. Carvallo G. O. Rydin H. (2021). Cryptic interactions revisited from ecological networks: mosses as a key link between trees and hummingbirds. Funct. Ecol. 35 226–238. 10.1111/1365-2435.13691
Francisco T. M. Couto D. R. Evans D. M. Garbin M. L. Ruiz-Miranda C. R. (2018). Structure and robustness of an epiphyte-phorophyte commensalistic network in a neotropical inselberg. Austr. Ecol. 43 903–914. 10.1111/aec.12640
Francisco T. M. Couto D. R. Garbin M. L. Muylaert R. L. Ruiz-Miranda C. R. (2019). Low modularity and specialization in a commensalistic epiphyte–phorophyte network in a tropical cloud forest. Biotropica 51 509–518. 10.1111/btp.12670
Gruber B. Bluethgen N. Fruend J. Dormann C. F. (2009). Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2 7–24. 10.2174/1874213000902010007
Guimera R. Mossa S. Turtschi A. Amaral L. A. N. (2005). The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. U.S.A. 102 7794–7799. 10.1073/pnas.0407994102 15911778
Guimera R. Sales-Pardo M. Amaral L. A. N. (2007). Module identification in bipartite and directed networks. Phys. Rev. E 76:036102. 10.1103/PhysRevE.76.036102 17930301
Heleno R. Devoto M. Pocock M. (2012). Connectance of species interaction networks and conservation value: is it any good to be well connected? Ecol. Indic. 14 7–10. 10.1016/j.ecolind.2011.06.032
Ines Borthagaray A. Soutullo A. Carranza A. Arim M. (2018). A modularity-based approach for identifying biodiversity management units. Rev. Chil. Hist. Nat. 91:2. 10.1186/s40693-018-0072-y
Klinghardt M. Zotz G. (2021). Abundance and seasonal growth of epiphytic ferns at three sites along a rainfall gradient in Western Europe. Flora 274:151749. 10.1016/j.flora.2020.151749
Krömer T. Kessler M. Gradstein S. R. (2007). Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecol. 189 261–278. 10.1007/s11258-006-9182-8
Lan G. Zhu H. Cao M. (2012). Tree species diversity of a 20-ha plot in a tropical seasonal rainforest in Xishuangbanna, southwest China. J. For. Res. 17 432–439. 10.1007/s10310-011-0309-y
Landi P. Minoarivelo H. O. Brannstrom A. Hui C. Dieckmann U. (2018). Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60 319–345. 10.1007/s10144-018-0628-3
Li S. Liu W.-Y. Li D.-W. Song L. Shi X.-M. Lu H.-Z. (2015). Species richness and vertical stratification of epiphytic lichens in subtropical primary and secondary forests in southwest China. Fungal Ecol. 17 30–40. 10.1016/j.funeco.2015.02.005
Li S. Liu W. Wang L. Ma W. Song L. (2011). Biomass, diversity and composition of epiphytic macrolichens in primary and secondary forests in the subtropical Ailao Mountains, SW China. For. Ecol. Manage. 261 1760–1770. 10.1016/j.foreco.2011.01.037
Mendieta-Leiva G. Ramos F. N. Elias J. P. C. Zotz G. (2020). EpIG-DB: a database of vascular epiphyte assemblages in the Neotropics. J. Veg. Sci. 31 518–528. 10.1111/jvs.12867
Naranjo C. Iriondo J. M. Riofrio M. L. Lara-Romero C. (2019). Evaluating the structure of commensalistic epiphyte-phorophyte networks: a comparative perspective of biotic interactions. Aob Plants 11:lz011. 10.1093/aobpla/plz011 30996861
Nieder J. Prosperi J. Michaloud G. (2001). Epiphytes and their contribution to canopy diversity. Plant Ecol. 153 51–63. 10.1023/A:1017517119305
Novotny V. Basset Y. Miller S. E. Weiblen G. D. Bremer B. Cizek L. et al. (2002). Low host specificity of herbivorous insects in a tropical forest. Nature 416 841–844. 10.1038/416841a 11976681
Olesen J. M. Bascompte J. Dupont Y. L. Jordano P. (2007). The modularity of pollination networks. Proc. Natl. Acad. Sci. U.S.A. 104 19891–19896. 10.1073/pnas.0706375104 18056808
Olivia Cortes-Anzures B. Maria Corona-Lopez A. Damon A. Mata-Rosas M. Flores-Palacios A. (2020). Phorophyte type determines epiphyte-phorophyte network structure in a Mexican oak forest. Flora 272:151704. 10.1016/j.flora.2020.151704
Padilha P. T. Elias G. A. dos Santos R. Martins R. Citadini-Zanette V. (2017). Vascular epiphytes respond to successional stages and microhabitat variations in a subtropical forest in southern Brazil. Braz. J. Bot. 40 897–905. 10.1007/s40415-017-0391-2
Pardow A. Lakatos M. (2013). Desiccation Tolerance and global change: implications for tropical bryophytes in lowland forests. Biotropica 45 27–36. 10.1111/j.1744-7429.2012.00884.x
Patino J. Gonzalez-Mancebo J. M. (2011). Exploring the effect of host tree identity on epiphyte bryophyte communities in different Canarian subtropical cloud forests. Plant Ecol. 212 433–449. 10.1007/s11258-010-9835-5
Peralta G. (2016). Merging evolutionary history into species interaction networks. Funct. Ecol. 30 1917–1925. 10.1111/1365-2435.12669
Piazzon M. Larrinaga A. R. Santamaria L. (2011). Are nested networks more robust to disturbance? A test using epiphyte-tree, comensalistic networks. PLoS One 6:e19637. 10.1371/journal.pone.0019637 21589931
Pinheiro R. B. P. Felix G. M. F. Dormann C. F. Mello M. A. R. (2019). A new model explaining the origin of different topologies in interaction networks. Ecology 100:e02796. 10.1002/ecy.2796 31232470
Quiel C. R. Zotz G. (2021). Vascular epiphyte assemblages on isolated trees along an elevational gradient in Southwest Panama. Divers. Basel 13:49. 10.3390/d13020049
Saiz H. Dainese M. Chiarucci A. Nascimbene J. (2020). Networks of epiphytic lichens and host trees along elevation gradients: climate change implications in mountain ranges. J. Ecol. 109 1122–1132. 10.1111/1365-2745.13538
Sayago R. Lopezaraiza-Mikel M. Quesada M. Yolotl Alvarez-Anorve M. Cascante-Marin A. Ma Bastida J. (2013). Evaluating factors that predict the structure of a commensalistic epiphyte - phorophyte network. Proc. R. Soc. B Biol. Sci. 280:20122821. 10.1098/rspb.2012.2821 23407832
Shen T. Corlett R. T. Song L. Ma W.-Z. Guo X.-L. Song Y. et al. (2018). Vertical gradient in bryophyte diversity and species composition in tropical and subtropical forests in Yunnan, SW China. J. Veg. Sci. 29 1075–1087. 10.1111/jvs.12692
Siaz-Torres S. S. Mora-Olivo A. Arellano-Mendez L. U. Vanoye-Eligio V. Flores-Rivas J. de la Rosa-Manzano E. (2021). Contribution of peeling host for epiphyte abundance in two tropical dry forests in the “El Cielo biosphere reserve” Mexico. Plant Species Biol. 36 269–283. 10.1111/1442-1984.12317
Silva I. A. Ferreira A. W. C. Lima M. I. S. Soares J. J. (2010). Networks of epiphytic orchids and host trees in Brazilian gallery forests. J. Trop. Ecol. 26 127–137. 10.1017/s0266467409990551
Song C. Rohr R. P. Saavedra S. (2017). Why are some plant-pollinator networks more nested than others? J. Anim. Ecol. 86 1417–1424. 10.1111/1365-2656.12749 28833083
Song L. Zhang Y.-J. Chen X. Li S. Lu H.-Z. Wu C.-S. et al. (2015b). Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest. J. Plant Res. 128 573–584. 10.1007/s10265-015-0721-z 25813755
Song L. Ma W.-Z. Yao Y.-L. Liu W.-Y. Li S. Chen K. et al. (2015a). Bole bryophyte diversity and distribution patterns along three altitudinal gradients in Yunnan, China. J. Veg. Sci. 26 576–587. 10.1111/jvs.12263
Spruch L. Hellwig J. Zotz G. Blasius B. (2019). Modeling community assembly on growing habitat “islands”: a case study on trees and their vascular epiphyte communities. Theor. Ecol. 12 513–529. 10.1007/s12080-019-0425-4
Stein K. Coulibaly D. Balima L. H. Goetze D. Linsenmair K. E. Porembski S. et al. (2021). Plant-pollinator networks in savannas of Burkina Faso, West Africa. Divers. Basel 13:1. 10.3390/d13010001
Taylor A. Saldaña A. Zotz G. Kirby C. Díaz I. Burns K. (2016). Composition patterns and network structure of epiphyte–host interactions in chilean and New Zealand temperate forests. New Zeal. J. Bot. 54 204–222. 10.1080/0028825x.2016.1147471
Toivonen J. M. Suominen L. Gonzales-Inca C. A. Trujillo Paucar G. Jones M. M. (2017). Environmental drivers of vascular and non-vascular epiphyte abundance in tropical pre-montane cloud forests in Northern Peru. J. Veg. Sci. 28 1198–1208. 10.1111/jvs.12577
Veron S. Fontaine C. Dubos N. Clergeau P. Pavoine S. (2018). Predicting the impacts of co-extinctions on phylogenetic diversity in mutualistic networks. Biol. Conserv. 219 161–171. 10.1016/j.biocon.2018.01.028
Vizentin-Bugoni J. Sperry J. H. Kelley J. P. Gleditsch J. M. Foster J. T. Drake D. R. et al. (2021). Ecological correlates of species’ roles in highly invaded seed dispersal networks. Proc. Natl. Acad. Sci. U.S.A. 118:e2009532118. 10.1073/pnas.2009532118 33431649
Vizentin-Bugoni J. Tarwater C. E. Foster J. T. Drake D. R. Gleditsch J. M. Hruska A. M. et al. (2019). Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364 78–82. 10.1126/science.aau8751 30948550
Wagner K. Mendieta-Leiva G. Zotz G. (2015). Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms. Aob Plants 7:lu092. 10.1093/aobpla/plu092 25564514
Watts S. Dormann C. F. Martin Gonzalez A. M. Ollerton J. (2016). The influence of floral traits on specialization and modularity of plant-pollinator networks in a biodiversity hotspot in the Peruvian Andes. Ann. Bot. 118 415–429. 10.1093/aob/mcw114 27562649
Welti E. A. R. Joern A. (2015). Structure of trophic and mutualistic networks across broad environmental gradients. Ecol. Evol. 5 326–334. 10.1002/ece3.1371 25691960
Zanatta F. Engler R. Collart F. Broennimann O. Mateo R. G. Papp B. et al. (2020). Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nat. Commun. 11:5601. 10.1038/s41467-020-19410-8 33154374
Zarate-Garcia A. M. Noguera-Savelli E. Andrade-Canto S. B. Zavaleta-Mancera H. A. Gauthier A. Alatorre-Cobos F. (2020). Bark water storage capacity influences epiphytic orchid preference for host trees. Am. J. Bot. 107 726–734. 10.1002/ajb2.1470 32346866
Zhao M. Geekiyanage N. Xu J. Khin M. M. Nurdiana D. R. Paudel E. et al. (2015). Structure of the epiphyte community in a tropical montane forest in SW China. PLoS One 10:e0122210. 10.1371/journal.pone.0122210 25856457
Zotarelli H. G. S. Molina J. M. P. Ribeiro J. E. L. S. Sofia S. H. (2019). A commensal network of epiphytic orchids and host trees in an Atlantic forest remnant: a case study revealing the important role of large trees in the network structure. Austr. Ecol. 44 114–125. 10.1111/aec.12659
Zotz G. (2007). Johansson revisited: the spatial structure of epiphyte assemblages. J. Veg. Sci. 18 123–130.