[en] Understanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods. From the findings, the key features associated with higher stability in mesophilic and thermophilic chitinases were fewer and/or shorter loops, oligomerization, and less flexible surface regions. No consistent trends were observed between stability and amino acid composition, structural features, or electrostatic interactions. Instead, unique elements affecting stability were identified in different chitinases. Notably, hyperthermostable chitinase had a much shorter surface loop compared to psychrophilic and mesophilic homologs, implying that the extended floppy surface region in cold-adapted and mesophilic chitinases may have acted as a "weak link" from where unfolding was initiated. MD simulations confirmed that the prevalence and flexibility of the loops adjacent to the active site were greater in low-temperature-adapted chitinases and may have led to the occlusion of the active site at higher temperatures compared to their thermostable homologs. Following this, loop "hot spots" for stabilizing and destabilizing mutations were also identified. This information is not only useful for the elucidation of the structure-stability relationship, but will be crucial for designing and engineering chitinases to have enhanced thermoactivity and to withstand harsh industrial processing conditions.
Hossain, Md Abir; Bio-Bio-1 Research Foundation, Sangskriti Bikash Kendra Bhaban, 1/E/1 Poribagh, Dhaka 1000, Bangladesh ; Department of Biochemistry and Microbiology, North South University, Plot 15, Block B, Bashundhara, Dhaka 1229, Bangladesh
Guerriero, Gea ; Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg
Berni, Roberto ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Hausman, Jean-Francois ; Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg
Bokhari, Saleem A; Biosciences Department, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
Bridge, Wallace J; School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW 2052, Australia
Siddiqui, Khawar Sohail; School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW 2052, Australia
Language :
English
Title :
Computational Analysis of Thermal Adaptation in Extremophilic Chitinases: The Achilles' Heel in Protein Structure and Industrial Utilization.
Funkhouser, J.D.; Aronson, N.N. Chitinase Family GH18: Evolutionary Insights from the Genomic History of a Diverse Protein Family. BMC Evol. Biol. 2007, 7, 96. [CrossRef] [PubMed]
Songsiriritthigul, C.; Lapboonrueng, S.; Pechsrichuang, P.; Pesatcha, P.; Yamabhai, M. Expression and Characterization of Bacillus Licheniformis Chitinase (ChiA), Suitable for Bioconversion of Chitin Waste. Bioresour. Technol. 2010, 101, 4096–4103. [CrossRef] [PubMed]
Chavan, S.B.; Deshpande, M.V. Chitinolytic Enzymes: An Appraisal as a Product of Commercial Potential. Biotechnol. Prog. 2013, 29, 833–846. [CrossRef] [PubMed]
Fukamizo, F. Chitinolytic Enzymes: Catalysis, Substrate Binding, and Their Application. Curr. Protein Pept. Sci. 2000, 1, 105–124. [CrossRef] [PubMed]
Hamid, R.; Khan, M.; Ahmad, M.; Ahmad, M.; Abdin, M.; Javed, S.; Musarrat, J. Chitinases: An Update. J. Pharm. Bioallied Sci. 2013, 5, 21. [CrossRef] [PubMed]
Lonhienne, T.; Mavromatis, K.; Vorgias, C.E.; Buchon, L.; Gerday, C.; Bouriotis, V. Cloning, Sequences, and Characterization of Two Chitinase Genes from the Antarctic Arthrobacter Sp. Strain TAD20: Isolation and Partial Characterization of the Enzymes. J. Bacteriol. 2001, 183, 1773–1779. [CrossRef] [PubMed]
Stefanidi, E.; Vorgias, C.E. Molecular Analysis of the Gene Encoding a New Chitinase from the Marine Psychrophilic Bacterium Moritella Marina and Biochemical Characterization of the Recombinant Enzyme. Extremophiles 2008, 12, 541–552. [CrossRef]
Tsuji, H.; Nishimura, S.; Inui, T.; Kado, Y.; Ishikawa, K.; Nakamura, T.; Uegaki, K. Kinetic and Crystallographic Analyses of the Catalytic Domain of Chitinase from Pyrococcus Furiosus-the Role of Conserved Residues in the Active Site: Archaeal Chitinase Complexed with Substrate. FEBS J. 2010, 277, 2683–2695. [CrossRef]
Malecki, P.H.; Raczynska, J.E.; Vorgias, C.E.; Rypniewski, W. Structure of a Complete Four-Domain Chitinase from Moritella Marina, a Marine Psychrophilic Bacterium. Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 821–829. [CrossRef]
Malecki, P.H.; Vorgias, C.E.; Petoukhov, M.V.; Svergun, D.I.; Rypniewski, W. Crystal Structures of Substrate-Bound Chitinase from the Psychrophilic Bacterium Moritella Marina and Its Structure in Solution. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 676–684. [CrossRef] [PubMed]
Nakamura, T.; Mine, S.; Hagihara, Y.; Ishikawa, K.; Uegaki, K. Structure of the Catalytic Domain of the Hyperthermophilic Chitinase from Pyrococcus Furiosus. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. 2007, 63, 7–11. [CrossRef] [PubMed]
Protein Adaptation in Extremophiles; Siddiqui, K.S.; Thomas, T. (Eds.) Nova Biomedical Books: New York, NY, USA, 2008; ISBN 978-1-60456-019-0.
Feller, G. Protein Stability and Enzyme Activity at Extreme Biological Temperatures. J. Phys. Condens. Matter 2010, 22, 323101. [CrossRef]
Eijsink, V.G.H.; Bjørk, A.; Gåseidnes, S.; Sirevåg, R.; Synstad, B.; van den Burg, B.; Vriend, G. Rational Engineering of Enzyme Stability. J. Biotechnol. 2004, 113, 105–120. [CrossRef]
Siddiqui, K.S.; Parkin, D.M.; Curmi, P.M.G.; Francisci, D.D.; Poljak, A.; Barrow, K.; Noble, M.H.; Trewhella, J.; Cavicchioli, R. A Novel Approach for Enhancing the Catalytic Efficiency of a Protease at Low Temperature: Reduction in Substrate Inhibition by Chemical Modification. Biotechnol. Bioeng. 2009, 103, 676–686. [CrossRef]
Siddiqui, K.S.; Poljak, A.; De Francisci, D.; Guerriero, G.; Pilak, O.; Burg, D.; Raftery, M.J.; Parkin, D.M.; Trewhella, J.; Cavicchioli, R. A Chemically Modified α-Amylase with a Molten-Globule State Has Entropically Driven Enhanced Thermal Stability†. Protein Eng. Des. Sel. 2010, 23, 769–780. [CrossRef]
Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S.M.; Siddiqui, K.S.; Williams, T.J. Biotechnological Uses of Enzymes from Psychrophiles. Microb. Biotechnol. 2011, 4, 449–460. [CrossRef]
Wang, Y.-J.; Jiang, W.-X.; Zhang, Y.-S.; Cao, H.-Y.; Zhang, Y.; Chen, X.-L.; Li, C.-Y.; Wang, P.; Zhang, Y.-Z.; Song, X.-Y.; et al. Structural Insight Into Chitin Degradation and Thermostability of a Novel Endochitinase From the Glycoside Hydrolase Family 18. Front. Microbiol. 2019, 10, 2457. [CrossRef]
Chen, W.; Jiang, X.; Yang, Q. Glycoside Hydrolase Family 18 Chitinases: The Known and the Unknown. Biotechnol. Adv. 2020, 43, 107553. [CrossRef]
Suzuki, K.; Sugawara, N.; Suzuki, M.; Uchiyama, T.; Katouno, F.; Nikaidou, N.; Watanabe, T. Chitinases A, B, and C1 of Serratia Marcescens 2170 Produced by Recombinant Escherichia Coli: Enzymatic Properties and Synergism on Chitin Degradation. Biosci. Biotechnol. Biochem. 2002, 66, 1075–1083. [CrossRef] [PubMed]
Mavromatis, K.; Feller, G.; Kokkinidis, M.; Bouriotis, V. Cold Adaptation of a Psychrophilic Chitinase: A Mutagenesis Study. Protein Eng. Des. Sel. 2003, 16, 497–503. [CrossRef] [PubMed]
Purushotham, P.; Podile, A.R. Synthesis of Long-Chain Chitooligosaccharides by a Hypertransglycosylating Processive Endochiti-nase of Serratia Proteamaculans 568. J. Bacteriol. 2012, 194, 4260–4271. [CrossRef] [PubMed]
Gao, J.; Bauer, M.W.; Shockley, K.R.; Pysz, M.A.; Kelly, R.M. Growth of Hyperthermophilic Archaeon Pyrococcus Furiosus on Chitin Involves Two Family 18 Chitinases. Appl. Environ. Microbiol. 2003, 69, 3119–3128. [CrossRef] [PubMed]
Gaseidnes, S.; Synstad, B.; Jia, X.; Kjellesvik, H.; Vriend, G.; Eijsink, V.G.H. Stabilization of a Chitinase from Serratia Marcescens by Gly->Ala and Xxx->Pro Mutations. Protein Eng. Des. Sel. 2003, 16, 841–846. [CrossRef] [PubMed]
Siddiqui, K.S. Some like It Hot, Some like It Cold: Temperature Dependent Biotechnological Applications and Improvements in Extremophilic Enzymes. Biotechnol. Adv. 2015, 33, 1912–1922. [CrossRef]
Siddiqui, K.S. Defying the Activity–Stability Trade-off in Enzymes: Taking Advantage of Entropy to Enhance Activity and Thermostability. Crit. Rev. Biotechnol. 2017, 37, 309–322. [CrossRef]
Oyeleye, A.; Normi, Y.M. Chitinase: Diversity, Limitations, and Trends in Engineering for Suitable Applications. Biosci. Rep. 2018, 38, BSR2018032300. [CrossRef]
Satyanarayana, T.; Littlechild, J.; Kawarabayasi, Y. (Eds.) Thermophilic Microbes in Environmental and Industrial Biotechnology: Biotechnology of Thermophiles, 2nd ed.; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-5898-8.
Neeraja, C.; Moerschbacher, B.; Podile, A.R. Fusion of Cellulose Binding Domain to the Catalytic Domain Improves the Activity and Conformational Stability of Chitinase in Bacillus Licheniformis DSM13. Bioresour. Technol. 2010, 101, 3635–3641. [CrossRef]
Kumar, S.; Tsai, C.-J.; Nussinov, R. Maximal Stabilities of Reversible Two-State Proteins†. Biochemistry 2002, 41, 5359–5374. [CrossRef] [PubMed]
Lopez, C.F.; Darst, R.K.; Rossky, P.J. Mechanistic Elements of Protein Cold Denaturation†. J. Phys. Chem. B 2008, 112, 5961–5967. [CrossRef] [PubMed]
Sanfelice, D.; Morandi, E.; Pastore, A.; Niccolai, N.; Temussi, P.A. Cold Denaturation Unveiled: Molecular Mechanism of the Asymmetric Unfolding of Yeast Frataxin. ChemPhysChem 2015, 16, 3599–3602. [CrossRef] [PubMed]
Tina, K.G.; Bhadra, R.; Srinivasan, N. PIC: Protein Interactions Calculator. Nucleic Acids Res. 2007, 35, W473–W476. [CrossRef]
Hooft, R.W.W.; Sander, C.; Vriend’, G. Positioning Hydrogen Atoms by Optimizing Hydrogen-Bond Networks in Protein Structures. Proteins Struct. Funct. Bioinform. 1996, 26, 363–376. [CrossRef]
Vogt, G.; Argos, P. Protein Thermal Stability: Hydrogen Bonds or Internal Packing? Fold. Des. 1997, 2, S40–S46. [CrossRef]
Vogt, G.; Woell, S.; Argos, P. Protein Thermal Stability, Hydrogen Bonds, and Ion Pairs. J. Mol. Biol. 1997, 269, 631–643. [CrossRef]
Payne, C.M.; Baban, J.; Horn, S.J.; Backe, P.H.; Arvai, A.S.; Dalhus, B.; Bjørås, M.; Eijsink, V.G.H.; Sørlie, M.; Beckham, G.T.; et al. Hallmarks of Processivity in Glycoside Hydrolases from Crystallographic and Computational Studies of the Serratia Marcescens Chitinases. J. Biol. Chem. 2012, 287, 36322–36330. [CrossRef]
Ishida, T.; Kinoshita, K. Prediction of Disordered Regions in Proteins Based on the Meta Approach. Bioinformatics 2008, 24, 1344–1348. [CrossRef] [PubMed]
McWilliam, H.; Li, W.; Uludag, M.; Squizzato, S.; Park, Y.M.; Buso, N.; Cowley, A.P.; Lopez, R. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 2013, 41, W597–W600. [CrossRef] [PubMed]
Vriend, G. WHAT IF: A Molecular Modeling and Drug Design Program. J. Mol. Graph. 1990, 8, 52–56. [CrossRef]
Gallivan, J.P.; Dougherty, D.A. Cation-Pi Interactions in Structural Biology. Proc. Natl. Acad. Sci. USA 1999, 96, 9459–9464. [CrossRef]
Burley, S.; Petsko, G. Aromatic-Aromatic Interaction: A Mechanism of Protein Structure Stabilization. Science 1985, 229, 23–28. [CrossRef]
Overington, J.; Johnson, M.S.; Šali, A.; Blundell, T.L. Tertiary Structural Constraints on Protein Evolutionary Diversity: Templates, Key Residues and Structure Prediction. Proc. R Soc. Lond. B Biol. Sci. 1990, 241, 132–145. [CrossRef]
Reid, K.S.C.; Lindley, P.F.; Thornton, J.M. Sulphur-Aromatic Interactions in Proteins. FEBS Lett. 1985, 190, 209–213. [CrossRef]
Kyte, J.; Doolittle, R.F. A Simple Method for Displaying the Hydropathic Character of a Protein. J. Mol. Biol. 1982, 157, 105–132. [CrossRef]
Hubbard, S.J.; Thornton, J.M.; “Naccess”, Computer Program. Department Biochemistry and Molecular Biology University College London. 1993. Available online: http://www.bioinf.manchester.ac.uk/naccess/(accessed on 13 January 2021).
Le Guilloux, V.; Schmidtke, P.; Tuffery, P. Fpocket: An Open Source Platform for Ligand Pocket Detection. BMC Bioinf. 2009, 10, 168. [CrossRef]
Dundas, J.; Ouyang, Z.; Tseng, J.; Binkowski, A.; Turpaz, Y.; Liang, J. CASTp: Computed Atlas of Surface Topography of Proteins with Structural and Topographical Mapping of Functionally Annotated Residues. Nucleic Acids Res. 2006, 34, W116–W118. [CrossRef]
Pucci, F.; Bourgeas, R.; Rooman, M. Predicting Protein Thermal Stability Changes upon Point Mutations Using Statistical Potentials: Introducing HoTMuSiC. Sci. Rep. 2016, 6, 23257. [CrossRef] [PubMed]
Pucci, F.; Dhanani, M.; Dehouck, Y.; Rooman, M. Protein Thermostability Prediction within Homologous Families Using Temperature-Dependent Statistical Potentials. PLoS ONE 2014, 9, e91659. [CrossRef] [PubMed]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [CrossRef]
Huang, J.; MacKerell, A.D. CHARMM36 All-Atom Additive Protein Force Field: Validation Based on Comparison to NMR Data. J. Comput. Chem. 2013, 34, 2135–2145. [CrossRef] [PubMed]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [CrossRef]
Ayati, M.; Mandelman, D.; Aghajari, N.; Haser, R. Structure of Catalytic Domain of Psychrophilic Chitinase B from Arthrobacter TAD20. Available online: https://www.wwpdb.org/pdb?id=pdb_00001kfw (accessed on 13 January 2021).
Madhuprakash, J.; Singh, A.; Kumar, S.; Sinha, M.; Kaur, P.; Sharma, S.; Podile, A.R.; Singh, T.P. Structure of Chitinase D from Serratia Proteamaculans Reveals the Structural Basis of Its Dual Action of Hydrolysis and Transglycosylation. Int. J. Biochem. Mol. Biol. 2013, 4, 166–178.
Eisenhaber, F.; Lijnzaad, P.; Argos, P.; Sander, C.; Scharf, M. The Double Cubic Lattice Method: Efficient Approaches to Numerical Integration of Surface Area and Volume and to Dot Surface Contouring of Molecular Assemblies. J. Comput. Chem. 1995, 16, 273–284. [CrossRef]
Bondi, A. Van Der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [CrossRef]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]
Khan, F.I.; Bisetty, K.; Gu, K.-R.; Singh, S.; Permaul, K.; Hassan, M.I.; Wei, D.-Q. Molecular Dynamics Simulation of Chitinase I from Thermomyces Lanuginosus SSBP to Ensure Optimal Activity. Mol. Simul. 2017, 43, 480–490. [CrossRef]
Freddolino, P.L.; Harrison, C.B.; Liu, Y.; Schulten, K. Challenges in Protein-Folding Simulations. Nat. Phys. 2010, 6, 751–758. [CrossRef] [PubMed]
Choi, E.J.; Mayo, S.L. Generation and Analysis of Proline Mutants in Protein G. Protein Eng. Des. Sel. 2006, 19, 285–289. [CrossRef] [PubMed]
Karasuda, S.; Tanaka, S.; Kajihara, H.; Yamamoto, Y.; Koga, D. Plant Chitinase as a Possible Biocontrol Agent for Use Instead of Chemical Fungicides. Biosci. Biotechnol. Biochem. 2003, 67, 221–224. [CrossRef] [PubMed]
Jollès, P.; Muzzarelli, R.A.A. Chitin and Chitinases; Birkhäuser Verlag: Basel, Switzerland; Boston, MA, USA, 1999; ISBN 978-3-0348-8757-1.
Berini, F.; Casartelli, M.; Montali, A.; Reguzzoni, M.; Tettamanti, G.; Marinelli, F. Metagenome-Sourced Microbial Chitinases as Potential Insecticide Proteins. Front. Microbiol. 2019, 10, 1358. [CrossRef] [PubMed]
Gündüz Ergün, B.; Çalık, P. Lignocellulose Degrading Extremozymes Produced by Pichia Pastoris: Current Status and Future Prospects. Bioprocess Biosyst. Eng. 2016, 39, 1–36. [CrossRef]
Fischer, J.; Beckers, S.J.; Yiamsawas, D.; Thines, E.; Landfester, K.; Wurm, F.R. Targeted Drug Delivery in Plants: Enzyme-Responsive Lignin Nanocarriers for the Curative Treatment of the Worldwide Grapevine Trunk Disease Esca. Adv. Sci. 2019, 6, 1802315. [CrossRef]
Narendrakumar, G.; Karthick Raja Namasivayam, S.; Manikanta, M.; Saha, M.; Dasgupta, T.; Divyasri, N.; Anusha, C.; Arunkumar, B.; Preethi, T.V. Enhancement of Biocontrol Potential of Biocompatible Bovine Serum Albumin (BSA) Based Protein Nanoparticles Loaded Bacterial Chitinase against Major Plant Pathogenic Fungi Alternaria Alternata. Biocatal. Agric. Biotechnol. 2018, 15, 219–228. [CrossRef]
Lodhi, G.; Kim, Y.-S.; Hwang, J.-W.; Kim, S.-K.; Jeon, Y.-J.; Je, J.-Y.; Ahn, C.-B.; Moon, S.-H.; Jeon, B.-T.; Park, P.-J. Chitooligosaccha-ride and Its Derivatives: Preparation and Biological Applications. BioMed. Res. Int. 2014, 2014, 654913. [CrossRef]
Lv, M.; Hu, Y.; Gänzle, M.G.; Lin, J.; Wang, C.; Cai, J. Preparation of Chitooligosaccharides from Fungal Waste Mycelium by Recombinant Chitinase. Carbohydr. Res. 2016, 430, 1–7. [CrossRef]
Du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [CrossRef]
Pichyangkura, R.; Chadchawan, S. Biostimulant Activity of Chitosan in Horticulture. Sci. Hortic. 2015, 196, 49–65. [CrossRef]
Hidangmayum, A.; Dwivedi, P.; Katiyar, D.; Hemantaranjan, A. Application of Chitosan on Plant Responses with Special Reference to Abiotic Stress. Physiol. Mol. Biol. Plants 2019, 25, 313–326. [CrossRef] [PubMed]
Malerba, M.; Cerana, R. Chitin-and Chitosan-Based Derivatives in Plant Protection against Biotic and Abiotic Stresses and in Recovery of Contaminated Soil and Water. Polysaccharides 2020, 1, 3. [CrossRef]
Rabêlo, V.M.; Magalhães, P.C.; Bressanin, L.A.; Carvalho, D.T.; Dos Reis, C.O.; Karam, D.; Doriguetto, A.C.; Dos Santos, M.H.; dos Santos Santos Filho, P.R.; de Souza, T.C. The Foliar Application of a Mixture of Semisynthetic Chitosan Derivatives Induces Tolerance to Water Deficit in Maize, Improving the Antioxidant System and Increasing Photosynthesis and Grain Yield. Sci. Rep. 2019, 9, 8164. [CrossRef] [PubMed]
Salachna, P.; Grzeszczuk, M.; Soból, M. Effects of Chitooligosaccharide Coating Combined with Selected Ionic Polymers on the Stimulation of Ornithogalum Saundersiae Growth. Molecules 2017, 22, 1903. [CrossRef]
Kaku, H.; Nishizawa, Y.; Ishii-Minami, N.; Akimoto-Tomiyama, C.; Dohmae, N.; Takio, K.; Minami, E.; Shibuya, N. Plant Cells Recognize Chitin Fragments for Defense Signaling through a Plasma Membrane Receptor. Proc. Natl. Acad. Sci. USA 2006, 103, 11086–11091. [CrossRef]