[en] Sweet cherry (Prunus avium L.) is a stone fruit widely consumed and appreciated for its organoleptic properties, as well as its nutraceutical potential. We here investigated the characteristics of six non-commercial Tuscan varieties of sweet cherry maintained at the Regional Germplasm Bank of the CNR-IBE in Follonica (Italy) and sampled ca. 60 days post-anthesis over three consecutive years (2016-2017-2018). We adopted an approach merging genotyping and targeted gene expression profiling with metabolomics. To complement the data, a study of the soluble proteomes was also performed on two varieties showing the highest content of flavonoids. Metabolomics identified the presence of flavanols and proanthocyanidins in highest abundance in the varieties Morellona and Crognola, while gene expression revealed that some differences were present in genes involved in the phenylpropanoid pathway during the 3 years and among the varieties. Finally, proteomics on Morellona and Crognola showed variations in proteins involved in stress response, primary metabolism and cell wall expansion. To the best of our knowledge, this is the first multi-pronged study focused on Tuscan sweet cherry varieties providing insights into the differential abundance of genes, proteins and metabolites.
Berni, Roberto ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes ; Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100, Siena, Italy
Charton, Sophie ; Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41, Rue du Brill, L-4422, Belvaux, Luxembourg
Planchon, Sébastien ; Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41, Rue du Brill, L-4422, Belvaux, Luxembourg
Legay, Sylvain; Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940, Hautcharage, Luxembourg
Romi, Marco; Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100, Siena, Italy
Cantini, Claudio; Istituto per la BioEconomia (IBE CNR), Dipartimento di Scienze BioAgroAlimentari, via Aurelia 49, 58022, Follonica, Italy
Cai, Giampiero; Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100, Siena, Italy
Hausman, Jean-Francois; Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940, Hautcharage, Luxembourg
Renaut, Jenny; Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41, Rue du Brill, L-4422, Belvaux, Luxembourg. jenny.renaut@list.lu
Guerriero, Gea ; Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940, Hautcharage, Luxembourg. gea.guerriero@list.lu
Language :
English
Title :
Molecular investigation of Tuscan sweet cherries sampled over three years: gene expression analysis coupled to metabolomics and proteomics.
During the acquisition of the data presented in this study, R.B. was in receipt of the PhD fellowship “Pegaso” financed by the Region Tuscany. Aude Corvisy and Laurent Solinhac are gratefully acknowledged for technical help in sequencing and genotyping.
Del Cueto, J. et al. Cyanogenic glucosides and derivatives in almond and sweet cherry flower buds from dormancy to flowering. Front. Plant Sci. 8, 800 (2017). DOI: 10.3389/fpls.2017.00800
Püssa, T. Principles of Food Toxicology (CRC Press, 2007).
Berni, R. et al. Functional molecules in locally-adapted crops: the case study of tomatoes, onions and sweet cherry fruits from Tuscany in Italy. Front. Plant Sci. 9, 1983 (2018). DOI: 10.3389/fpls.2018.01983
Ballistreri, G. et al. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chem. 140, 630–638 (2013). DOI: 10.1016/j.foodchem.2012.11.024
Berni, R. et al. Tuscan varieties of sweet cherry are rich sources of ursolic and oleanolic acid: protein modeling coupled to targeted gene expression and metabolite analyses. Molecules 24, 1590 (2019). DOI: 10.3390/molecules24081590
Szakiel, A., Pączkowski, C., Pensec, F. & Bertsch, C. Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem Rev. 11, 263–284 (2012). DOI: 10.1007/s11101-012-9241-9
Buschhaus, C. & Jetter, R. Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces? J. Exp. Bot. 62, 841–853 (2011). DOI: 10.1093/jxb/erq366
Quero-García, J., Iezzoni, A., Pulawska, J. & Lang, G. A. Cherries: Botany, Production and Uses (CABI, 2017).
Lugli, S. et al. The sweet cherry production in northern Italy: innovative rootstocks and emerging high-density plantings. Inovacije u voćarstvu III savetovanje, Tema Savetovanja: Unapredđenje proizvodnje trešnje i višnje, Beograd, Srbija, 10 februar 2011 godine Zbornik radova 75–92 (2011).
Tricase, C., Rana, R., Andriano, A. M. & Ingrao, C. An input flow analysis for improved environmental sustainability and management of cherry orchards: a case study in the Apulia region. J. Clean. Prod. 156, 766–774 (2017). DOI: 10.1016/j.jclepro.2017.04.088
Taiti, C., Caparrotta, S., Mancuso, S. & Masi, E. Morpho-chemical and aroma investigations on autochthonous and highly-prized sweet cherry varieties grown in Tuscany. Adv. Horticultural Sci. 31, 121–129 (2017).
Girelli, C. R. et al. Traceability of “Tuscan PGI” extra virgin olive oils by 1H NMR metabolic profiles collection and analysis. Metabolites 8, 60 (2018). DOI: 10.3390/metabo8040060
Di Matteo, A. et al. Characterization of autochthonous sweet cherry cultivars (Prunus avium L.) of southern Italy for fruit quality, bioactive compounds and antioxidant activity. J. Sci. Food Agric. 97, 2782–2794 (2017). DOI: 10.1002/jsfa.8106
Marchese, A. et al. S-genotype identification, genetic diversity and structure analysis of Italian sweet cherry germplasm. Tree Genet. Genomes 13, 93 (2017). DOI: 10.1007/s11295-017-1176-2
Martini, S., Conte, A. & Tagliazucchi, D. Phenolic compounds profile and antioxidant properties of six sweet cherry (Prunus avium) cultivars. Food Res. Int. 97, 15–26 (2017). DOI: 10.1016/j.foodres.2017.03.030
Mathesius, U. Flavonoid functions in plants and their interactions with other organisms. Plants (Basel) 7, 30 (2018). DOI: 10.3390/plants7020030
Falcone Ferreyra, M. L., Rius, S. & Casati, P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 3, 222 (2012).
Ramakrishna, A. & Ravishankar, G. A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 6, 1720–1731 (2011). DOI: 10.4161/psb.6.11.17613
Kuhn, B. M., Geisler, M., Bigler, L. & Ringli, C. Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. Plant Physiol. 156, 585–595 (2011). DOI: 10.1104/pp.111.175976
Carbone, F. et al. Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. Plant Cell Environ. 32, 1117–1131 (2009). DOI: 10.1111/j.1365-3040.2009.01994.x
Berni, R., Cai, G., Xu, X., Hausman, J.-F. & Guerriero, G. Identification of jasmonic acid biosynthetic genes in sweet cherry and expression analysis in four ancient varieties from Tuscany. Int J. Mol. Sci. 20, 3569 (2019). DOI: 10.3390/ijms20143569
Möller, B. & Herrmann, K. Quinic acid esters of hydroxycinnamic acids in stone and pome fruit. Phytochemistry 22, 477–481 (1983). DOI: 10.1016/0031-9422(83)83029-5
Sobeh, M. et al. HPLC-PDA-MS/MS characterization of bioactive secondary metabolites from Turraea fischeri Bark extract and its antioxidant and hepatoprotective activities in vivo. Molecules 22, 2089 (2017). DOI: 10.3390/molecules22122089
Pizzolatti, M. G. et al. Two epimeric flavalignans from Trichilia catigua (Meliaceae) with antimicrobial activity. Z. Naturforsch. J. Biosci. 57, 483–488 (2002). DOI: 10.1515/znc-2002-5-614
Olszewska, M. A. et al. The effect of standardised flower extracts of Sorbus aucuparia L. on proinflammatory enzymes, multiple oxidants, and oxidative/nitrative damage of human plasma components in vitro. Oxid. Med. Cell Longev. 2019, 9746358 (2019). DOI: 10.1155/2019/9746358
Nemes, A. et al. Determination of flavonoid and proanthocyanidin profile of hungarian sour cherry. Molecules 23, 3278 (2018). DOI: 10.3390/molecules23123278
Grzesik, M., Naparło, K., Bartosz, G. & Sadowska-Bartosz, I. Antioxidant properties of catechins: comparison with other antioxidants. Food Chem. 241, 480–492 (2018). DOI: 10.1016/j.foodchem.2017.08.117
Qa’dan, F., Verspohl, E. J., Nahrstedt, A., Petereit, F. & Matalka, K. Z. Cinchonain Ib isolated from Eriobotrya japonica induces insulin secretion in vitro and in vivo. J. Ethnopharmacol. 124, 224–227 (2009). DOI: 10.1016/j.jep.2009.04.023
Kavitha, P. et al. Genotypic variability for antioxidant and quality parameters among tomato cultivars, hybrids, cherry tomatoes and wild species. J. Sci. Food Agric. 94, 993–999 (2014). DOI: 10.1002/jsfa.6359
Minoggio, M. et al. Polyphenol pattern and antioxidant activity of different tomato lines and cultivars. Ann. Nutr. Metab. 47, 64–69 (2003). DOI: 10.1159/000069277
Gómez, J. D., Vital, C. E., Oliveira, M. G. A. & Ramos, H. J. O. Broad range flavonoid profiling by LC/MS of soybean genotypes contrasting for resistance to Anticarsia gemmatalis (Lepidoptera: Noctuidae). PLoS ONE 13, e0205010 (2018). DOI: 10.1371/journal.pone.0205010
Shamloo, M. et al. Effects of genotype and temperature on accumulation of plant secondary metabolites in Canadian and Australian wheat grown under controlled environments. Sci. Rep. 7, 9133 (2017). DOI: 10.1038/s41598-017-09681-5
Yang, C.-Q. et al. Transcriptional regulation of plant secondary metabolism. J. Integr. Plant Biol. 54, 703–712 (2012). DOI: 10.1111/j.1744-7909.2012.01161.x
Tohge, T., Watanabe, M., Hoefgen, R. & Fernie, A. R. The evolution of phenylpropanoid metabolism in the green lineage. Crit. Rev. Biochem. Mol. Biol. 48, 123–152 (2013). DOI: 10.3109/10409238.2012.758083
Cochrane, F. C., Davin, L. B. & Lewis, N. G. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65, 1557–1564 (2004). DOI: 10.1016/j.phytochem.2004.05.006
Huang, J. et al. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 153, 1526–1538 (2010). DOI: 10.1104/pp.110.157370
Liu, J., Osbourn, A. & Ma, P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol. Plant 8, 689–708 (2015). DOI: 10.1016/j.molp.2015.03.012
Jin, W. et al. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnol. J. 14, 2120–2133 (2016). DOI: 10.1111/pbi.12568
Starkevič, P. et al. Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS ONE 10, e0126991 (2015). DOI: 10.1371/journal.pone.0126991
Stracke, R. et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 50, 660–677 (2007). DOI: 10.1111/j.1365-313X.2007.03078.x
Berni, R. et al. Identification of the laccase-like multicopper oxidase gene family of sweet cherry (Prunus avium L.) and expression analysis in six ancient Tuscan varieties. Sci. Rep. 9, 1–14. (2019). DOI: 10.1038/s41598-019-39151-z
Yu, S., Kim, H., Yun, D.-J., Suh, M. C. & Lee, B. Post-translational and transcriptional regulation of phenylpropanoid biosynthesis pathway by Kelch repeat F-box protein SAGL1. Plant Mol. Biol. 99, 135–148 (2019). DOI: 10.1007/s11103-018-0808-8
Ncube, B., Finnie, J. F. & Van Staden, J. Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. South Afr. J. Bot. 82, 11–20 (2012). DOI: 10.1016/j.sajb.2012.05.009
Perin, E. C. et al. ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chem. 271, 516–526 (2019). DOI: 10.1016/j.foodchem.2018.07.213
Castellarin, S. D. et al. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. 30, 1381–1399 (2007). DOI: 10.1111/j.1365-3040.2007.01716.x
Selles, B., Jacquot, J.-P. & Rouhier, N. Comparative genomic study of protein disulfide isomerases from photosynthetic organisms. Genomics 97, 37–50 (2011). DOI: 10.1016/j.ygeno.2010.10.001
Berni, R. et al. Reactive Oxygen Species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ. Exp. Bot. 161, 98–106 (2018). DOI: 10.1016/j.envexpbot.2018.10.017
Tian, S., Qin, G. & Li, B. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol. Biol. 82, 593–602 (2013). DOI: 10.1007/s11103-013-0035-2
Dixon, D. P. & Edwards, R. Glutathione Transferases. Arabidopsis Book 8, e0131 (2010).
Gallie, D. R. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J. Exp. Bot. 64, 433–443 (2013). DOI: 10.1093/jxb/ers330
Hirai, M. Y. A robust omics-based approach for the identification of glucosinolate biosynthetic genes. Phytochem Rev. 8, 15–23 (2009). DOI: 10.1007/s11101-008-9114-4
Bell, L. in Annual Plant Reviews Online 1–31 (American Cancer Society, 2019).
Soundararajan, P. & Kim, J. S. Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules 23, 2983 (2018). DOI: 10.3390/molecules23112983
Textor, S. & Gershenzon, J. Herbivore induction of the glucosinolate–myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem. Rev. 8, 149–170 (2009). DOI: 10.1007/s11101-008-9117-1
Dietz, K.-J. et al. The function of peroxiredoxins in plant organelle redox metabolism. J. Exp. Bot. 57, 1697–1709 (2006). DOI: 10.1093/jxb/erj160
Asada, K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141, 391–396 (2006). DOI: 10.1104/pp.106.082040
Nikkanen, L. & Rintamäki, E. Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 369, 20130224 (2014). DOI: 10.1098/rstb.2013.0224
Broin, M., Cuiné, S., Eymery, F. & Rey, P. The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage. Plant Cell 14, 1417–1432 (2002). DOI: 10.1105/tpc.001644
Laskowski, M. J. et al. FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase. Plant Physiol. 128, 578–590 (2002). DOI: 10.1104/pp.010581
Kawarazaki, T. et al. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 1833, 2775–2780 (2013). DOI: 10.1016/j.bbamcr.2013.06.024
Maskin, L. et al. Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum). Plant Sci. 161, 739–746 (2001). DOI: 10.1016/S0168-9452(01)00464-2
Li, J. et al. Proteomic analysis of the effects of gibberellin on increased fruit sink strength in Asian pear (Pyrus pyrifolia). Sci. Horticulturae 195, 25–36 (2015). DOI: 10.1016/j.scienta.2015.08.035
Mangeon, A., Junqueira, R. M. & Sachetto-Martins, G. Functional diversity of the plant glycine-rich proteins superfamily. Plant Signal. Behav. 5, 99–104 (2010). DOI: 10.4161/psb.5.2.10336
Cho, S. M. et al. Comparative transcriptome analysis of field- and chamber-grown samples of Colobanthus quitensis (Kunth) Bartl, an Antarctic flowering plant. Sci. Rep. 8, 1–14. (2018). DOI: 10.1038/s41598-017-17765-5
Sun, W., Van Montagu, M. & Verbruggen, N. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta (BBA)—Gene Struct. Expr. 1577, 1–9 (2002). DOI: 10.1016/S0167-4781(02)00417-7
Baumann, M. J. et al. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. Plant Cell 19, 1947–1963 (2007). DOI: 10.1105/tpc.107.051391
Nishitani, K. & Tominaga, R. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J. Biol. Chem. 267, 21058–21064 (1992).
Fry, S. C. et al. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem. J. 282, 821–828 (1992). DOI: 10.1042/bj2820821
Thompson, J. E. & Fry, S. C. Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells. Plant J. 26, 23–34 (2001). DOI: 10.1046/j.1365-313x.2001.01005.x
Zhu, X. F. et al. XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis. Plant Cell 24, 4731–4747 (2012). DOI: 10.1105/tpc.112.106039
Yang, J. L. et al. Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol. 155, 1885–1892 (2011). DOI: 10.1104/pp.111.172221
Kaewthai, N. et al. Group III-A XTH genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth. Plant Physiol. 161, 440–454 (2013). DOI: 10.1104/pp.112.207308
Skalák, J. et al. Stimulation of IPT overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. J. Exp. Bot. 67, 2861–73. (2016). DOI: 10.1093/jxb/erw129
Clauw, P. et al. Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiol. 167, 800–816 (2015). DOI: 10.1104/pp.114.254284
Sampedro, J., Sieiro, C., Revilla, G., González-Villa, T. & Zarra, I. Cloning and expression pattern of a gene encoding an α-xylosidase active against xyloglucan oligosaccharides from Arabidopsis. Plant Physiol. 126, 910–920 (2001). DOI: 10.1104/pp.126.2.910
Günl, M. & Pauly, M. AXY3 encodes a α-xylosidase that impacts the structure and accessibility of the hemicellulose xyloglucan in Arabidopsis plant cell walls. Planta 233, 707–719 (2011). DOI: 10.1007/s00425-010-1330-7
Meng, M. et al. UDP-glucose pyrophosphorylase is not rate limiting, but is essential in Arabidopsis. Plant Cell Physiol. 50, 998–1011 (2009). DOI: 10.1093/pcp/pcp052
Roepke, J. et al. An apoplastic β-glucosidase is essential for the degradation of flavonol 3-o-β-glucoside-7-o-α-rhamnosides in Arabidopsis. Plant Cell Physiol. 58, 1030–1047 (2017). DOI: 10.1093/pcp/pcx050
Roepke, J. & Bozzo, G. G. Arabidopsis thaliana β-glucosidase BGLU15 attacks flavonol 3-O-β-glucoside-7-O-α-rhamnosides. Phytochemistry 109, 14–24 (2015). DOI: 10.1016/j.phytochem.2014.10.028
Zhou, S., Lou, Y.-R., Tzin, V. & Jander, G. Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol. 169, 1488–1498. (2015).
Mundim, F. M. & Pringle, E. G. Whole-plant metabolic allocation under water stress. Front. Plant Sci. 9, 852 (2018). DOI: 10.3389/fpls.2018.00852
Esposito, S. et al. Glutamate synthase activities and protein changes in relation to nitrogen nutrition in barley: the dependence on different plastidic glucose-6P dehydrogenase isoforms. J. Exp. Bot. 56, 55–64 (2005).
Cardi, M. et al. The effects of salt stress cause a diversion of basal metabolism in barley roots: possible different roles for glucose-6-phosphate dehydrogenase isoforms. Plant Physiol. Biochem. 86, 44–54 (2015). DOI: 10.1016/j.plaphy.2014.11.001
Walker, R. P. et al. Phosphoenolpyruvate carboxykinase in cherry (Prunus avium L.) fruit during development. J. Exp. Bot. 62, 5357–5365 (2011). DOI: 10.1093/jxb/err189
Wilkinson, J. Q., Lanahan, M. B., Conner, T. W. & Klee, H. J. Identification of mRNAs with enhanced expression in ripening strawberry fruit using polymerase chain reaction differential display. Plant Mol. Biol. 27, 1097–1108 (1995). DOI: 10.1007/BF00020883
Araújo, W. L., Tohge, T., Ishizaki, K., Leaver, C. J. & Fernie, A. R. Protein degradation—an alternative respiratory substrate for stressed plants. Trends Plant Sci. 16, 489–498. (2011).
War, A. R. et al. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 7, 1306–1320 (2012). DOI: 10.4161/psb.21663
Boeckx, T., Winters, A. L., Webb, K. J. & Kingston-Smith, A. H. Polyphenol oxidase in leaves: is there any significance to the chloroplastic localization? J. Exp. Bot. 66, 3571–3579 (2015). DOI: 10.1093/jxb/erv141
Hu, H. et al. Proteomic analysis of peach endocarp and mesocarp during early fruit development. Physiologia Plant. 142, 390–406 (2011). DOI: 10.1111/j.1399-3054.2011.01479.x
Briat, J.-F. et al. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann. Bot. 105, 811–822 (2010). DOI: 10.1093/aob/mcp128
Stare, T., Stare, K., Weckwerth, W., Wienkoop, S. & Gruden, K. Comparison between proteome and transcriptome response in potato (Solanum tuberosum L.) leaves following potato virus Y (PVY) infection. Proteomes 5, 14 (2017). DOI: 10.3390/proteomes5030014
Testolin, R. et al. Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43, 512–520 (2000). DOI: 10.1139/g00-010
Cipriani, G. et al. AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor. Appl. Genet. 99, 65–72 (1999). DOI: 10.1007/s001220051209
Messina, R., Lain, O., Marrazzo, M. T., Cipriani, G. & Testolin, R. New set of microsatellite loci isolated in apricot. Mol. Ecol. Notes 4, 432–434 (2004). DOI: 10.1111/j.1471-8286.2004.00674.x
Dirlewanger, E. et al. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor. Appl. Genet. 105, 127–138 (2002). DOI: 10.1007/s00122-002-0867-7
Hagen, L. S. et al. Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol. Ecol. Notes 4, 742–745 (2004). DOI: 10.1111/j.1471-8286.2004.00802.x
Xuan, H., Wang, R., Büchele, M., Möller, O. & Hartmann, W. Microsatellite markers (SSR) as a tool to assist in identification of sweet (Prunus avium) and sour cherry (Prunus cerasus). Acta Hortic. 839, 507–514 (2009). DOI: 10.17660/ActaHortic.2009.839.69
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007). DOI: 10.1007/s11306-007-0082-2
Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016). DOI: 10.1093/nar/gkw256
Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19 (2007). DOI: 10.1186/gb-2007-8-2-r19
Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1 (2002). DOI: 10.1186/gb-2002-3-7-research0034
Wu, X., Xiong, E., Wang, W., Scali, M. & Cresti, M. Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nat. Protoc. 9, 362–374 (2014). DOI: 10.1038/nprot.2014.022
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). DOI: 10.1016/0003-2697(76)90527-3
Li, H.-J. & Deinzer, M. L. Tandem Mass Spectrometry for Sequencing Proanthocyanidins. Anal. Chem. 79, 1739–1748 (2007). DOI: 10.1021/ac061823v
Senica, M., Stampar, F., Veberic, R. & Mikulic-Petkovsek, M. Transition of phenolics and cyanogenic glycosides from apricot and cherry fruit kernels into liqueur. Food Chem. 203, 483–490 (2016). DOI: 10.1016/j.foodchem.2016.02.110
Jaiswal, R., Jayasinghe, L. & Kuhnert, N. Identification and characterization of proanthocyanidins of 16 members of the Rhododendron genus (Ericaceae) by tandem LC-MS. J. Mass Spectrom. 47, 502–515 (2012). DOI: 10.1002/jms.2954
Sokół-Łętowska, A., Kucharska, A. Z., Szumny, A., Wińska, K. & Nawirska-Olszańska, A. Phenolic Composition Stability and Antioxidant Activity of Sour Cherry Liqueurs. Molecules 23, 2156 (2018). DOI: 10.3390/molecules23092156
Gu, W.-Y. et al. Metabolites software-assisted flavonoid hunting in plants using ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry. Molecules 20, 3955–3971 (2015). DOI: 10.3390/molecules20033955
de Souza, L. M., Cipriani, T. R., Iacomini, M., Gorin, P. A. J. & Sassaki, G. L. HPLC/ESI-MS and NMR analysis of flavonoids and tannins in bioactive extract from leaves of Maytenus ilicifolia. J. Pharm. Biomed. Anal. 47, 59–67 (2008). DOI: 10.1016/j.jpba.2007.12.008
Lv, Q. et al. Identification of Proanthocyanidins from Litchi (Litchi chinensis Sonn.) Pulp by LC-ESI-Q-TOF-MS and Their Antioxidant Activity. PLoS ONE 10, e0120480 (2015). DOI: 10.1371/journal.pone.0120480