[en] Carbon nanosheets are two-dimensional nanostructured materials that have applications as energy storage devices, electrochemical sensors, sample supports, filtration membranes, thanks to their high porosity and surface area. Here, for the first time, carbon nanosheets have been prepared from the stems and leaves of a nettle fibre clone, by using a cheap and straight-forward procedure that can be easily scaled up. The nanomaterial shows interesting physical parameters, namely interconnectivity of pores, graphitization, surface area and pore width. These characteristics are similar to those described for the nanomaterials obtained from other fibre crops. However, the advantage of nettle over other plants is its fast growth and easy propagation of homogeneous material using stem cuttings. This last aspect guarantees homogeneity of the starting raw material, a feature that is sought-after to get a nanomaterial with homogeneous and reproducible properties. To evaluate the potential toxic effects if released in the environment, an assessment of the impact on plant reproduction performance and microalgal growth has been carried out by using tobacco pollen cells and the green microalga Pseudokirchneriella subcapitata. No inhibitory effects on pollen germination are recorded, while algal growth inhibition is observed at higher concentrations of leaf carbon nanosheets with lower graphitization degree.
Disciplines :
Environmental sciences & ecology Biotechnology
Author, co-author :
Shah, Syed Shaheen; Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
Qasem, Mohammed Ameen Ahmed; Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
Berni, Roberto ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes ; Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy
Del Casino, Cecilia; Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy
Cai, Giampiero; Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy
Contal, Servane; Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
Ahmad, Irshad; Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
Siddiqui, Khawar Sohail; School of Biotechnology and Biomolecular Sciences (BABS), The University of New South Wales, Sydney, NSW, 2052, Australia
Gatti, Edoardo; Institute of Bioeconomy (IBE), National Research Council, Via P. Gobetti, 101-I, I-40129, Bologna, Italy
Predieri, Stefano; Institute of Bioeconomy (IBE), National Research Council, Via P. Gobetti, 101-I, I-40129, Bologna, Italy
Hausman, Jean-Francois; Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, 4940, Hautcharage, Luxembourg
Cambier, Sébastien; Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
Guerriero, Gea; Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, 4940, Hautcharage, Luxembourg. gea.guerriero@list.lu
Aziz, Md Abdul; Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia. maziz@kfupm.edu.sa
Yun, Y. S. et al. Hierarchically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors. ACS Appl. Mater. Interfaces 7, 3684–3690 (2015). DOI: 10.1021/am5081919
Ahammad, A. J. S. et al. Porous tal palm carbon nanosheets: preparation, characterization and application for the simultaneous determination of dopamine and uric acid. Nanoscale Adv. 1, 613–626 (2019). DOI: 10.1039/C8NA00090E
Wang, H. et al. Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy. ACS Nano 7, 5131–5141 (2013). DOI: 10.1021/nn400731g
Wang, L. et al. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. Chemsuschem 6, 880–889 (2013). DOI: 10.1002/cssc.201200990
Li, J., Liu, W., Xiao, D. & Wang, X. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor. Appl. Surf. Sci. 416, 918–924 (2017). DOI: 10.1016/j.apsusc.2017.04.162
Chen, X. et al. A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor. Sci. Rep. 7, 7362 (2017). DOI: 10.1038/s41598-017-06730-x
Hao, E. et al. Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices. J. Mater. Chem. A 5, 2204–2214 (2017). DOI: 10.1039/C6TA08169J
Chang, J. et al. Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim. Acta 157, 290–298 (2015). DOI: 10.1016/j.electacta.2014.12.169
Yang, H., Ye, S., Zhou, J. & Liang, T. Biomass-Derived Porous Carbon Materials for Supercapacitor. Front. Chem. 7, 1 (2019). DOI: 10.3389/fchem.2019.00001
Kumar, S., Yadav, A., Yadav, M. & Yadav, J. P. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm.f. BMC Res. Notes 10, 1 (2017). DOI: 10.1186/s13104-017-2385-3
Xu, J. et al. Response of Bioactive Phytochemicals in Vegetables and Fruits to Environmental Factors. Eur. J. Nut. Food Saf. 1, 233–247. 10.9734/ejnfs/2019/v9i330062 (2019). DOI: 10.9734/ejnfs/2019/v9i330062
Liu, M., Liu, G., Gong, L., Wang, D. & Sun, J. Relationships of Biomass with Environmental Factors in the Grassland Area of Hulunbuir China. PLoS ONE 9, 1 (2014).
Joshi, R., Singla-Pareek, S. L. & Pareek, A. Engineering abiotic stress response in plants for biomass production. J. Biol. Chem. 293, 5035–5043 (2018). DOI: 10.1074/jbc.TM117.000232
Farag, M. A., Weigend, M., Luebert, F., Brokamp, G. & Wessjohann, L. A. Phytochemical, phylogenetic, and anti-inflammatory evaluation of 43 Urtica accessions (stinging nettle) based on UPLC-Q-TOF-MS metabolomic profiles. Phytochemistry 96, 170–183 (2013). DOI: 10.1016/j.phytochem.2013.09.016
Xu, X. et al. Insights into Lignan Composition and Biosynthesis in Stinging Nettle (Urtica dioica L.). Molecules 24, 3863 (2019). DOI: 10.3390/molecules24213863
Guerriero, G. et al. Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes (Basel) 9, 1 (2018). DOI: 10.3390/genes9010001
Backes, A. et al. Sucrose synthase gene expression analysis in the fibre nettle (Urtica dioica L.) cultivar “clone 13”. Ind. Crops Prod. 123, 315–322 (2018). DOI: 10.1016/j.indcrop.2018.06.090
Xu, X. et al. Cell wall composition and transcriptomics in stem tissues of stinging nettle (Urtica dioica L): Spotlight on a neglected fibre crop. Plant Direct 3, e00151 (2019). DOI: 10.1002/pld3.151
Carniel, F. C. et al. Graphene oxide impairs the pollen performance of Nicotiana tabacum and Corylus avellana suggesting potential negative effects on the sexual reproduction of seed plants. Environ. Sci. Nano 5, 1608–1617 (2018). DOI: 10.1039/C8EN00052B
Begum, P., Ikhtiari, R. & Fugetsu, B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49, 3907–3919 (2011). DOI: 10.1016/j.carbon.2011.05.029
Anjum, N. A. et al. Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L). Sci. Total Environ. 472, 834–841 (2014). DOI: 10.1016/j.scitotenv.2013.11.018
Candotto Carniel, F. et al. Beyond graphene oxide acidity: Novel insights into graphene related materials effects on the sexual reproduction of seed plants. J. Hazard. Mater. 393, 122380 (2020). DOI: 10.1016/j.jhazmat.2020.122380
Wu, K. et al. Large and porous carbon sheets derived from water hyacinth for high-performance supercapacitors. RSC Adv. 6, 29996–30003 (2016). DOI: 10.1039/C5RA25098F
Suhas, et al. Cellulose: A review as natural, modified and activated carbon adsorbent. Biores. Technol. 216, 1066–1076 (2016). DOI: 10.1016/j.biortech.2016.05.106
Yahya, M. A., Al-Qodah, Z. & Ngah, C. W. Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain. Energy Rev. 46, 218–235 (2015). DOI: 10.1016/j.rser.2015.02.051
Jain, A., Balasubramanian, R. & Srinivasan, M. P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 283, 789–805 (2016). DOI: 10.1016/j.cej.2015.08.014
Ahammad, A. J. S. et al. Activated jute carbon paste screen-printed FTO electrodes for nonenzymatic amperometric determination of nitrite. J. Electroanal. Chem. 832, 368–379 (2019). DOI: 10.1016/j.jelechem.2018.11.034
Deb Nath, N. C., Shah, S. S., Qasem, M. A. A., Zahir, M. H. & Aziz, M. A. Defective Carbon Nanosheets Derived from Syzygium cumini Leaves for Electrochemical Energy-Storage. ChemistrySelect 4, 9079–9083 (2019). DOI: 10.1002/slct.201900891
Wang, L. et al. Electrochemical Sensing and Biosensing Platform Based on Biomass-Derived Macroporous Carbon Materials. Anal. Chem. 86, 1414–1421 (2014). DOI: 10.1021/ac401563m
Hinks, N. J., McKinlay, A. C., Xiao, B., Wheatley, P. S. & Morris, R. E. Metal organic frameworks as NO delivery materials for biological applications. Microporous Mesoporous Mater. 129, 330–334 (2010). DOI: 10.1016/j.micromeso.2009.04.031
field survey and in vivo X-ray analyses. Harada, E. et al. Assessment of willow (Salix sp.) as a woody heavy metal accumulator. Metallomics 3, 1340–1346 (2011). DOI: 10.1039/c1mt00102g
Shah, S. S. et al. Preparation and characterization of manganese oxide nanoparticles-coated Albizia procera derived carbon for electrochemical water oxidation. J. Mater. Sci: Mater. Electron. 30, 16087–16098 (2019).
Thurston, E. L. Morphology, Fine Structure, and Ontogeny of the Stinging Emergence of Urtica Dioica. Am. J. Bot. 61, 809–817 (1974). DOI: 10.1002/j.1537-2197.1974.tb12306.x
Suman, S., Panwar, D. S. & Gautam, S. Surface morphology properties of biochars obtained from different biomass waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39, 1007–1012 (2017). DOI: 10.1080/15567036.2017.1283553
Mutyala, S. & Jayaraman, M. Synthesis of Nitrogen Doped Carbon and Its Enhanced Electrochemical Activity towards Ascorbic Acid Electrooxidation. Int. J. Electrochem. https://www.hindawi.com/journals/ijelc/2014/246746/ (2014) 10.1155/2014/246746.
Zhang, Z. H., Zhao, T. S., Bai, B. F., Zeng, L. & Wei, L. A highly active biomass-derived electrode for all vanadium redox flow batteries. Electrochim. Acta 248, 197–205 (2017). DOI: 10.1016/j.electacta.2017.07.129
Shang, H. et al. Preparing high surface area porous carbon from biomass by carbonization in a molten salt medium. RSC Adv. 5, 75728–75734 (2015). DOI: 10.1039/C5RA12406A
Sodtipinta, J. et al. Interconnected open-channel carbon nanosheets derived from pineapple leaf fiber as a sustainable active material for supercapacitors. Ind. Crops Prod. 104, 13–20 (2017). DOI: 10.1016/j.indcrop.2017.04.015
Chu, M. et al. Novel biomass-derived smoke-like carbon as a supercapacitor electrode material. R. Soc. Open Sci. 6, 190132 (2019). DOI: 10.1098/rsos.190132
Rezma, S., Birot, M., Hafiane, A. & Deleuze, H. Physically activated microporous carbon from a new biomass source: Date palm petioles. C. R. Chim. 20, 881–887 (2017). DOI: 10.1016/j.crci.2017.05.003
Puech, P. et al. Analyzing the Raman Spectra of Graphenic Carbon Materials from Kerogens to Nanotubes: What Type of Information Can Be Extracted from Defect Bands?. C Journal of Carbon Research 5, 69 (2019). DOI: 10.3390/c5040069
Gu, W., Sevilla, M., Magasinski, A., Fuertes, A. B. & Yushin, G. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy Environ. Sci. 6, 2465–2476 (2013). DOI: 10.1039/c3ee41182f
Guerriero, G., Sergeant, K. & Hausman, J.-F. Integrated -omics: a powerful approach to understanding the heterogeneous lignification of fibre crops. Int J Mol Sci 14, 10958–10978 (2013). DOI: 10.3390/ijms140610958
Behr, M. et al. Distribution of cell-wall polysaccharides and proteins during growth of the hemp hypocotyl. Planta 10.1007/s00425-019-03245-9 (2019). DOI: 10.1007/s00425-019-03245-9
Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015). DOI: 10.1515/pac-2014-1117
Ponomarev, N. & Sillanpää, M. Combined chemical-templated activation of hydrolytic lignin for producing porous carbon. Ind. Crops Prod. 135, 30–38 (2019). DOI: 10.1016/j.indcrop.2019.03.050
Sing, K. S. W. et al. Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity.
Morishita, T. et al. A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon 48, 2690–2707 (2010). DOI: 10.1016/j.carbon.2010.03.064
Nair, R. et al. Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12, 2212–2220 (2012). DOI: 10.1166/jnn.2012.5775
Jordan, J. T. et al. Carbon nanotubes affect early growth, flowering time and phytohormones in tomato. Chemosphere 256, 127042 (2020). DOI: 10.1016/j.chemosphere.2020.127042
López-Vargas, E. R. et al. Seed Priming with Carbon Nanomaterials to Modify the Germination, Growth, and Antioxidant Status of Tomato Seedlings. Agronomy 10, 639 (2020). DOI: 10.3390/agronomy10050639
Tardieu, F. & Tuberosa, R. Dissection and modelling of abiotic stress tolerance in plants. Curr. Opin. Plant Biol. 13, 206–212 (2010). DOI: 10.1016/j.pbi.2009.12.012
Bressan, R., Bohnert, H. & Zhu, J.-K. Abiotic stress tolerance: from gene discovery in model organisms to crop improvement. Mol Plant 2, 1–2 (2009). DOI: 10.1093/mp/ssn097
Hedhly, A., Hormaza, J. I. & Herrero, M. Global warming and sexual plant reproduction. Trends Plant Sci. 14, 30–36 (2009). DOI: 10.1016/j.tplants.2008.11.001
Mesihovic, A., Iannacone, R., Firon, N. & Fragkostefanakis, S. Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reprod 29, 93–105 (2016). DOI: 10.1007/s00497-016-0281-y
Kroeger, J. H. & Geitmann, A. Pollen tube growth: Getting a grip on cell biology through modeling. Mech. Res. Commun. 42, 32–39 (2012). DOI: 10.1016/j.mechrescom.2011.11.005
Sabrine, H., Afif, H., Mohamed, B., Hamadi, B. & Maria, H. Effects of cadmium and copper on pollen germination and fruit set in pea (Pisum sativum L.). (2010).
Wolters, J. H. B. & Martens, M. J. M. Effects of Air Pollutants on Pollen. Bot. Rev. 53, 372–414 (1987). DOI: 10.1007/BF02858322
Speranza, A., Leopold, K., Maier, M., Taddei, A. R. & Scoccianti, V. Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II). Environ. Pollut. 158, 873–882 (2010). DOI: 10.1016/j.envpol.2009.09.022
Speranza, A. et al. In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environ Pollut 179, 258–267 (2013). DOI: 10.1016/j.envpol.2013.04.021
Hoecke, K. V., Schamphelaere, K. A. C. D., der Meeren, P. V., Lcucas, S. & Janssen, C. R. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: Importance of surface area. Environ. Toxicol. Chem. 27, 1948–1957 (2008). DOI: 10.1897/07-634.1
Katsumata, M., Koike, T., Nishikawa, M., Kazumura, K. & Tsuchiya, H. Rapid ecotoxicological bioassay using delayed fluorescence in the green alga Pseudokirchneriella subcapitata. Water Res. 40, 3393–3400 (2006). DOI: 10.1016/j.watres.2006.07.016
Zhang, L., Lei, C., Yang, K., White, J. C. & Lin, D. Cellular response of Chlorella pyrenoidosa to oxidized multi-walled carbon nanotubes. Environ. Sci. Nano 5, 2415–2425 (2018). DOI: 10.1039/C8EN00703A
Schwab, F. et al. Are Carbon Nanotube Effects on Green Algae Caused by Shading and Agglomeration?. Environ. Sci. Technol. 45, 6136–6144 (2011). DOI: 10.1021/es200506b
Saxena, P. et al. Aquatic nanotoxicology: impact of carbon nanomaterials on algal flora. Energ. Ecol. Environ. 5, 240–252 (2020). DOI: 10.1007/s40974-020-00151-9
Karakoti, A. S., Hench, L. L. & Seal, S. The potential toxicity of nanomaterials—The role of surfaces. JOM 58, 77–82 (2006). DOI: 10.1007/s11837-006-0147-0
Fu, P. P., Xia, Q., Hwang, H.-M., Ray, P. C. & Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 22, 64–75 (2014). DOI: 10.1016/j.jfda.2014.01.005
Hull, M. S. et al. Release of Metal Impurities from Carbon Nanomaterials Influences Aquatic Toxicity. Environ. Sci. Technol. 43, 4169–4174 (2009). DOI: 10.1021/es802483p
Pikula, K. et al. Comparison of the Level and Mechanisms of Toxicity of Carbon Nanotubes, Carbon Nanofibers, and Silicon Nanotubes in Bioassay with Four Marine Microalgae. Nanomaterials 10, 485 (2020). DOI: 10.3390/nano10030485
Bredemann, G. Die grosse Brennessel Urtica dioica L.: Forschungen über ihren Anbau zur Fasergewinnung; mit einem Anhang über ihre Nutzung für Arznei- und Futtermittel sowie technische Zwecke von Kurt Garber. (Akademie Verlag, 1959).
Guerriero, G. et al. Transcriptomic profiling of hemp bast fibres at different developmental stages. Sci. Rep. 7, 4961 (2017). DOI: 10.1038/s41598-017-05200-8
Blake, A. W. et al. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J. Biol. Chem. 281, 29321–29329 (2006). DOI: 10.1074/jbc.M605903200
Brewbaker, J. L. & Kwack, B. H. The Essential Role of Calcium Ion in Pollen Germination and Pollen Tube Growth. Am. J. Bot. 50, 859–865 (1963). DOI: 10.1002/j.1537-2197.1963.tb06564.x
OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test in OECD Guidelines for the Testing of Chemicals, Section 2, (OECD Publishing, Paris, 2011).