Article (Scientific journals)
Estimation of Northern Hardwood Forest Inventory Attributes Using UAV Laser Scanning (ULS): Transferability of Laser Scanning Methods and Comparison of Automated Approaches at the Tree-and Stand-Level
Vandendaele, Bastien; Fournier, Richard A.; Vepakomma, Udayalakshmi et al.
2021In Remote Sensing, 13 (2796), p. 32
Peer Reviewed verified by ORBi
 

Files


Full Text
Vandendaele B. et al_Estimation of Northern Hardwood Forest Inventory_Rem sen_PR2021.pdf
Author postprint (11.63 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
hardwood; uneven-aged forest; individual tree detection and delineation (ITD); forest inventory; diameter at breast height (DBH); airborne laser scanning (ALS); terrestrial laser scanning (TLS); open-source analytic tools; UAV laser scanning (ULS)
Abstract :
[en] UAV laser scanning (ULS) has the potential to support forest operations since it provides high-density data with flexible operational conditions. This study examined the use of ULS systems to estimate several tree attributes from an uneven-aged northern hardwood stand. We investigated: (1) the transferability of raster-based and bottom-up point cloud-based individual tree detection (ITD) algorithms to ULS data; and (2) automated approaches to the retrieval of tree-level (i.e., height, crown diameter (CD), DBH) and stand-level (i.e., tree count, basal area (BA), DBH-distribution) forest inventory attributes. These objectives were studied under leaf-on and leaf-off canopy conditions. Results achieved from ULS data were cross-compared with ALS and TLS to better understand the potential and challenges faced by different laser scanning systems and methodological approaches in hardwood forest environments. The best results that characterized individual trees from ULS data were achieved under leaf-off conditions using a point cloud-based bottom-up ITD. The latter outperformed the raster-based ITD, improving the accuracy of tree detection (from 50% to 71%), crown delineation (from R² = 0.29 to R² = 0.61), and prediction of tree DBH (from R² = 0.36 to R² = 0.67), when compared with values that were estimated from reference TLS data. Major improvements were observed for the detection of trees in the lower canopy layer (from 9% with raster-based ITD to 51% with point cloud-based ITD) and in the intermediate canopy layer (from 24% with raster-based ITD to 59% with point cloud-based ITD). Under leaf-on conditions, LiDAR data from aerial systems include substantial signal occlusion incurred by the upper canopy. Under these conditions, the raster-based ITD was unable to detect low-level canopy trees (from 5% to 15% of trees detected from lower and intermediate canopy layers, respectively), resulting in a tree detection rate of about 40% for both ULS and ALS data. The cylinder-fitting method used to estimate tree DBH under leaf-off conditions did not meet inventory standards when compared to TLS DBH, resulting in RMSE = 7.4 cm, Bias = 3.1 cm, and R² = 0.75. Yet, it yielded more accurate estimates of the BA (+3.5%) and DBH-distribution of the stand than did allometric models -12.9%), when compared with in situ field measurements. Results suggest that the use of bottom-up ITD on high-density ULS data from leaf-off hardwood forest leads to promising results when estimating trees and stand attributes, which opens up new possibilities for supporting forest inventories and operations
Disciplines :
Agriculture & agronomy
Phytobiology (plant sciences, forestry, mycology...)
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Vandendaele, Bastien ;  Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech
Fournier, Richard A.
Vepakomma, Udayalakshmi
Pelletier, Gaetan
Lejeune, Philippe  ;  Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Martin-Ducup, Olivier
Language :
English
Title :
Estimation of Northern Hardwood Forest Inventory Attributes Using UAV Laser Scanning (ULS): Transferability of Laser Scanning Methods and Comparison of Automated Approaches at the Tree-and Stand-Level
Publication date :
16 July 2021
Journal title :
Remote Sensing
eISSN :
2072-4292
Publisher :
MDPI AG
Volume :
13
Issue :
2796
Pages :
32
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Available on ORBi :
since 17 August 2022

Statistics


Number of views
50 (12 by ULiège)
Number of downloads
71 (6 by ULiège)

Scopus citations®
 
21
Scopus citations®
without self-citations
20
OpenCitations
 
8
OpenAlex citations
 
20

Bibliography


Similar publications



Contact ORBi