Exomars NOMAD; hydrogen chloride; isotopic ratio; Mars; planetary evolution; ExoMars; Isotopic ratios; Martian atmospheres; Planetary evolutions; Short term; Solar nebula; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Following the recent detection of HCl in the atmosphere of Mars by ExoMars/Trace Gas Orbiter, we present here the first measurement of the 37Cl/35Cl isotopic ratio in the Martian atmosphere using a set of Nadir Occultation for MArs Discovery (NOMAD) observations. We determine an isotopic anomaly of −6 ± 78‰ compared to Earth standard, consistent with the −51‰–−1‰ measured on Mars’ surface by Curiosity. The measured isotopic ratio is also consistent with surface measurements, and suggests that Cl reservoirs may have undergone limited processing since formation in the Solar Nebula. The examination of possible sources and sinks of HCl shows only limited pathways to short-term efficient Cl fractionation and many plausible reservoirs of “light” Cl.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Liuzzi, Giuliano ; NASA Goddard Space Flight Center, Greenbelt, United States ; Department of Physics, American University, Washington, United States
Villanueva, Geronimo L. ; NASA Goddard Space Flight Center, Greenbelt, United States
Viscardy, Sebastien ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Mège, Daniel ; Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warszawa, Poland
Crismani, Matteo M. J. ; California State University San Bernardino, San Bernardino, United States
Aoki, Shohei ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium ; Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Japan
Gurgurewicz, Joanna ; Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warszawa, Poland
Tesson, Pierre-Antoine ; Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warszawa, Poland
Mumma, Michael J. ; NASA Goddard Space Flight Center, Greenbelt, United States
Smith, Michael D. ; NASA Goddard Space Flight Center, Greenbelt, United States
Faggi, Sara ; NASA Goddard Space Flight Center, Greenbelt, United States ; Department of Physics, American University, Washington, United States
Kofman, Vincent ; NASA Goddard Space Flight Center, Greenbelt, United States ; Department of Physics, American University, Washington, United States
Knutsen, Elise W. ; LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
Daerden, Frank ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Neary, Lori ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Schmidt, Frédéric ; Université Paris-Saclay, CNRS, GEOPS, Orsay, France
Trompet, Loïc ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Erwin, Justin T. ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Robert, Séverine ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium ; Institute of Condensed Matter and Nanosciences, Université Catholique del Louvain, Louvain-la-Neuve, Belgium
Thomas, Ian R. ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Ristic, Bojan ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Bellucci, Giancarlo ; Istituto di Astrofisica e Planetologia Spaziali, IAPS-INAF, Rome, Italy
Lopez-Moreno, Jóse Juan ; Instituto de Astrofisica de Andalucia, IAA-CSIC, Granada, Spain
Patel, Manish R. ; School of Physical Sciences, the Open University, Milton Keynes, United Kingdom ; Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
Vandaele, Ann Carine ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
ExoMars is a space mission of the European Space Agency (ESA) and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB-BIRA), assisted by Co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493), by the Spanish MICINN through its Plan Nacional and by European funds under grants PGC2018-101836-B-I00 and ESP2017-87143-R (MINECO/FEDER), as well as by UK Space Agency through grants ST/V002295/1, ST/V005332/1 and ST/S00145X/1 and Italian Space Agency through grant 2018-2-HH.0. The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709), and the CBK PAN team from the EXOMHYDR project, carried out within the TEAM program of the Foundation for Polish Science cofinanced by the European Union under the European Regional Development Fund (TEAM/2016-3/20). This work was supported by NASA's Mars Program Office under WBS 604796, “Participation in the TGO/NOMAD Investigation of Trace Gases on Mars” and by NASA's SEEC initiative under Grant Number NNX17AH81A, “Remote sensing of Planetary Atmospheres in the Solar System and Beyond.” U.S. investigators were supported by the National Aeronautics and Space Administration. S. Viscardy acknowledges support from the Belgian Fonds de la Recherche Scientifique-FNRS under grant numbers 30442502 (ET_HOME) and Belgian Science Policy Office BrainBe MICROBE Projects. S. Aoki is “Chargé de Recherches” at the F.R.S-FNRS. F. Schmidt acknowledges support from the “Institut National des Sciences de l'Univers” (INSU), the "Center National de la Recherche Scientifique" (CNRS) and "Center National d'Etudes Spatiales" (CNES) through the “Program National de Planétologie”. S. Robert thanks BELSPO for the FED-tWIN funding (Prf-2019-077-RT-MOLEXO).ExoMars is a space mission of the European Space Agency (ESA) and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB‐BIRA), assisted by Co‐PI teams from Spain (IAA‐CSIC), Italy (INAF‐IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493), by the Spanish MICINN through its Plan Nacional and by European funds under grants PGC2018‐101836‐B‐I00 and ESP2017‐87143‐R (MINECO/FEDER), as well as by UK Space Agency through grants ST/V002295/1, ST/V005332/1 and ST/S00145X/1 and Italian Space Agency through grant 2018‐2‐HH.0. The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía (SEV‐2017‐0709), and the CBK PAN team from the EXOMHYDR project, carried out within the TEAM program of the Foundation for Polish Science cofinanced by the European Union under the European Regional Development Fund (TEAM/2016‐3/20). This work was supported by NASA's Mars Program Office under WBS 604796, “Participation in the TGO/NOMAD Investigation of Trace Gases on Mars” and by NASA's SEEC initiative under Grant Number NNX17AH81A, “Remote sensing of Planetary Atmospheres in the Solar System and Beyond.” U.S. investigators were supported by the National Aeronautics and Space Administration. S. Viscardy acknowledges support from the Belgian Fonds de la Recherche Scientifique‐FNRS under grant numbers 30442502 (ET_HOME) and Belgian Science Policy Office BrainBe MICROBE Projects. S. Aoki is “Chargé de Recherches” at the F.R.S‐FNRS. F. Schmidt acknowledges support from the “Institut National des Sciences de l'Univers” (INSU), the "Center National de la Recherche Scientifique" (CNRS) and "Center National d'Etudes Spatiales" (CNES) through the “Program National de Planétologie”. S. Robert thanks BELSPO for the FED‐tWIN funding (Prf‐2019‐077‐RT‐MOLEXO).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ader, M., Chaudhuri, S., Coates, J. D., & Coleman, M. (2008). Microbial perchlorate reduction: A precise laboratory determination of the chlorine isotope fractionation and its possible biochemical basis. Earth and Planetary Science Letters, 269, 605–613. https://doi.org/10.1016/j.epsl.2008.03.023
Anders, E., & Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197–214. https://doi.org/10.1016/0016-7037(89)90286-x
Aoki, S., Daerden, F., Viscardy, S., Thomas, I. R., Erwin, J. T., Robert, S., et al. (2021). Annual appearance of hydrogen chloride on Mars and a striking similarity with the water vapor vertical distribution observed by TGO/NOMAD. Geophysical Research Letters, (Under review).
Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, G. L., Liuzzi, G., Thomas, I. R., et al. (2019). Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. Journal of Geophysical Research: Planets, 124, 3482–3497. https://doi.org/10.1029/2019je006109
Balme, M., Metzger, S., Towner, M., Ringrose, T., Greeley, R., & Iversen, J. (2003). Friction wind speeds in dust devils: A field study. Geophysical Research Letters, 30, 1830. https://doi.org/10.1029/2003GL017493
Barnes, J. D., & Cisneros, M. (2012). Mineralogical control on the chlorine isotope composition of altered oceanic crust. Chemical Geology, 326–327, 51–60. https://doi.org/10.1016/j.chemgeo.2012.07.022
Barnes, J. J., Franchi, I. A., McCubbin, F. M., & Anand, M. (2019). Multiple reservoirs of volatiles in the Moon revealed by the isotopic composition of chlorine in lunar basalts. Geochimica et Cosmochimica Acta, 266, 144–162. https://doi.org/10.1016/j.gca.2018.12.032
Böhlke, J. K., Sturchio, N. C., Gu, B., Horita, J., Brown, G. M., Jackson, W. A., et al. (2005). Perchlorate isotope forensics. Analytical Chemistry, 77, 7838–7842. https://doi.org/10.1021/ac051360d
Boyce, J. W., Treiman, A. H., Guan, Y., Ma, C., Eiler, J. M., Gross, J., et al. (2015). The chlorine isotope fingerprint of the lunar magma ocean. Science Advances, 1, e1500380. https://doi.org/10.1126/sciadv.1500380
Catling, D. C., Claire, M. W., Zahnle, K. J., Quinn, R. C., Clark, B. C., Hecht, M. H., & Kounaves, S. (2010). Atmospheric origins of perchlorate on Mars and in the Atacama. Journal of Geophysical Research, 115. https://doi.org/10.1029/2009je003425
Cernicharo, J., Goicoechea, J. R., Daniel, F., Agúndez, M., Caux, E., de Graauw, T., et al. (2010). The 35Cl/37Cl isotopic ratio in dense molecular clouds: HIFI observations of hydrogen chloride towards W3 A. Astronomy and Astrophysics, 518, L115. https://doi.org/10.1051/0004-6361/201014638
Clancy, R., Wolff, M. J., Lefèvre, F., Cantor, B. A., Malin, M. C., & Smith, M. D. (2016). Daily global mapping of Mars ozone column abundances with MARCI UV band imaging. Icarus, 266, 112–133. https://doi.org/10.1016/j.icarus.2015.11.016
Clifford, S. M., Lasue, J., Heggy, E., Boisson, J., McGovern, P., & Max, M. D. (2010). Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. Journal of Geophysical Research, 115, E07001. https://doi.org/10.1029/2009JE003462
Dalgarno, A., de Jong, T., Oppenheimer, M., & Black, J. H. (1974). Hydrogen chloride in dense interstellar clouds. Acta Pathologica Japonica, 192, L37. https://doi.org/10.1086/181584
de Groot, P. A. (Ed.), (2009). Chapter 9: Chlorine. Handbook of stable isotope analytical techniques (pp. 721–722). Elsevier. https://doi.org/10.1016/B978-0-444-51115-7.00009-7
Dhooghe, F., De Keyser, J., Altwegg, K., Briois, C., Balsiger, H., Berthelier, J.-J., et al. (2017). Halogens as tracers of protosolar nebula material in comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 472, 1336–1345. https://doi.org/10.1093/mnras/stx1911
Eggenkamp, H. G. M., Kreulen, R., & Koster Van Groos, A. F. (1995). Chlorine stable isotope fractionation in evaporites. Geochimica et Cosmochimica Acta, 59, 5169–5175. https://doi.org/10.1016/0016-7037(95)00353-3
Farley, K. A., Martin, P., Archer, P. D., Atreya, S. K., Conrad, P. G., Eigenbrode, J. L., et al. (2016). Light and variable 37Cl/35Cl ratios in rocks from Gale Crater, Mars: Possible signature of perchlorate. Earth and Planetary Science Letters, 438, 14–24. https://doi.org/10.1016/j.epsl.2015.12.013
Gargano, A., & Sharp, Z. (2019). The chlorine isotope composition of iron meteorites: Evidence for the Cl isotope composition of the solar nebula and implications for extensive devolatilization during planet formation. Meteoritics & Planetary Sciences, 54, 1619–1631. https://doi.org/10.1111/maps.13303
Glavin, D. P., Freissinet, C., Miller, K. E., Eigenbrode, J. L., Brunner, A. E., Buch, A., et al. (2013). Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. Journal of Geophysical Research, 118, 1955–1973. https://doi.org/10.1002/jgre.20144
Godon, A., Jendrzejewski, N., Castrec-Rouelle, M., Dia, A., Pineau, F., Boulègue, J., & Javoy, M. (2004). Origin and evolution of fluids from mud volcanoes in the Barbados accretionary complex. Geochimica et Cosmochimica Acta, 68, 2153–2165. https://doi.org/10.1016/j.gca.2003.08.021
Heays, A. N., Bosman, A. D., & van Dishoeck, E. F. (2017). Photodissociation and photoionisation of atoms and molecules of astrophysical interest. Astronomy and Astrophysics, 602, A105. https://doi.org/10.1051/0004-6361/201628742
Hecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M. M., Ming, D. W., et al. (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science, 325, 64–67. https://doi.org/10.1126/science.1172466
Iwagami, N., Ohtsuki, S., Tokuda, K., Ohira, N., Kasaba, Y., Imamura, T., et al. (2008). Hemispheric distributions of HCl above and below the Venus' clouds by ground-based 1.7 μm spectroscopy. Planetary and Space Science, 56, 1424–1434. https://doi.org/10.1016/j.pss.2008.05.009
Jakosky, B. M., Slipski, M., Benna, M., Mahaffy, P., Elrod, M., Yelle, R., et al. (2017). Mars' atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar. Science, 355, 1408–1410. https://doi.org/10.1126/science.aai7721
Jura, M. (1974). Chlorine-bearing molecules in interstellar clouds. Acta Pathologica Japonica, 190, L33. https://doi.org/10.1086/181497
Kama, M., Caux, E., López-Sepulcre, A., Wakelam, V., Dominik, C., Ceccarelli, C., et al. (2015). Depletion of chlorine into HCl ice in a protostellar core. Astronomy and Astrophysics, 574, A107. https://doi.org/10.1051/0004-6361/201424737
Keppler, F., Barnes, J. D., Horst, A., Bahlmann, E., Luo, J., Nadalig, T., et al. (2020). Chlorine isotope fractionation of the major chloromethane degradation processes in the environment. Environmental Science and Technology, 54, 1634–1645. https://doi.org/10.1021/acs.est.9b06139
Kippenberger, M., Schuster, G., Lelieveld, J., & Crowley, J. N. (2019). Trapping of HCl and oxidised organic trace gases in growing ice at temperatures relevant to cirrus clouds. Atmospheric Chemistry and Physics, 19, 11939–11951. https://doi.org/10.5194/acp-19-11939-2019
Knutsen, E. W., Villanueva, G. L., Liuzzi, G., Crismani, M. M. J., Mumma, M. J., Smith, M. D., et al. (2021). Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus, 357, 114266. https://doi.org/10.1016/j.icarus.2020.114266
Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., & Ohkubo, T. (2006). Galactic chemical evolution: Carbon through zinc. Acta Pathologica Japonica, 653, 1145–1171. https://doi.org/10.1086/508914
Korablev, O., Olsen, K. S., Trokhimovskiy, A., Lefèvre, F., Montmessin, F., Fedorova, A. A., et al. (2021). Transient HCl in the atmosphere of Mars. Science Advances, 7, eabe4386. https://doi.org/10.1126/sciadv.abe4386
Korablev, O., Vandaele, A. C., Montmessin, F., Fedorova, A. A., Trokhimovskiy, A., Forget, F., et al. (2019). No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 568, 517–520. https://doi.org/10.1038/s41586-019-1096-4
Laube, J. C., Kaiser, J., Sturges, W. T., Bonisch, H., & Engel, A. (2010). Chlorine isotope fractionation in the stratosphere. Science, 329, 1167. https://doi.org/10.1126/science.1191809
Lefèvre, F., & Krasnopolsky, V. (2017). Atmospheric photochemistry. In F. Forget, M. D. Smith, R. T. Clancy, R. W. Zurek, & R. M. Haberle (Eds.), The atmosphere and climate of Mars (pp. 405–432). Cambridge University Press. https://doi.org/10.1017/9781139060172.013
Liuzzi, G. (2021). Data in support of the publication “Probing the Atmospheric Cl Isotopic Ratio on Mars: Implications for Planetary Evolution and Atmospheric Chemistry” on. Geophysical Research Letters. https://doi.org/10.5281/zenodo.4660832
Liuzzi, G., Masiello, G., Serio, C., Venafra, S., & Camy-Peyret, C. (2016). Physical inversion of the full IASI spectra: Assessment of atmospheric parameters retrievals, consistency of spectroscopy and forward modelling. Journal of Quantitative Spectroscopy and Radiative Transfer, 182, 128–157. https://doi.org/10.1016/j.jqsrt.2016.05.022
Liuzzi, G., Villanueva, G. L., Crismani, M. M. J., Smith, M. D., Mumma, M. J., Daerden, F., et al. (2020). Strong variability of Martian water ice clouds during dust storms revealed from ExoMars trace gas orbiter/NOMAD. Journal of Geophysical Research: Planets, 125(4), e2019JE006250. https://doi.org/10.1029/2019JE006250
Liuzzi, G., Villanueva, G. L., Mumma, M. J., Smith, M. D., Daerden, F., Ristic, B., et al. (2019). Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus, 321, 671–690. https://doi.org/10.1016/j.icarus.2018.09.021
Lodders, K. (2010). Solar system abundances of the elements. In A. Goswami, & B. E. Reddy (Eds.), Principles and perspectives in cosmochemistry (pp. 379–417). Springer. https://doi.org/10.1007/978-3-642-10352-0_8
Luo, C., Xiao, Y., Ma, H., Ma, Y., Zhang, Y., & He, M. (2012). Stable isotope fractionation of chlorine during evaporation of brine from a saline lake. Chinese Science Bulletin, 57, 1833–1843. https://doi.org/10.1007/s11434-012-4994-5
Mahaffy, P. R., Webster, C. R., Cabane, M., Conrad, P. G., Coll, P., Atreya, S. K., et al. (2012). The sample analysis at Mars investigation and instrument suite. Space Science Reviews, 170, 401–478. https://doi.org/10.1007/s11214-012-9879-z
Mège, D. & Masson, P. (1996). A plume tectonics model for the Tharsis province, Mars. Planetary and Space Science, 44, 1499–1546. https://doi.org/10.1016/S0032-0633(96)00113-4
Michelsen, H. A., Salawitch, R. J., Gunson, M. R., Aellig, C., Kämpfer, N., Abbas, M. M., et al. (1996). Stratospheric chlorine partitioning: Constraints from shuttle-borne measurements of [HCl], [ClNO3], and [ClO]. Geophysical Research Letters, 23, 2361–2364. https://doi.org/10.1029/96gl00787
Neary, L., & Daerden, F. (2018). The GEM-Mars general circulation model for Mars: Description and evaluation. Icarus, 300, 458–476. https://doi.org/10.1016/j.icarus.2017.09.028
Neary, L., Daerden, F., Aoki, S., Whiteway, J., Clancy, R. T., Smith, M., et al. (2020). Explanation for the increase in high altitude water on Mars observed by NOMAD during the 2018 global dust storm. Geophysical Research Letters, 47, e2019GL084354. https://doi.org/10.1029/2019GL084354
Neefs, E., Vandaele, A. C., Drummond, R., Thomas, I. R., Berkenbosch, S., Clairquin, R., et al. (2015). NOMAD spectrometer on the ExoMars trace gas orbiter mission: Part 1-design, manufacturing and testing of the infrared channels. Applied Optics, 54, 8494. https://doi.org/10.1364/ao.54.008494
Olsen, K. S., Trokhimovskiy, A., Montabone, L., Fedorova, A. A., Luginin, M., Lefèvre, F., et al. (2021). Seasonal reappearance of HCl in the atmosphere of Mars during the Mars year 35 dusty season. Astronomy & Astrophysics, 647, A161. https://doi.org/10.1051/0004-6361/202140329
Perrier, S., Bertaux, J. L., Lefèvre, F., Lebonnois, S., Korablev, O., Fedorova, A., & Montmessin, F. (2006). Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. Journal of Geophysical Research, 111. https://doi.org/10.1029/2006je002681
Rivera-Valentin, E. G., Chevrier, V. F., Soto, A., & Martinez, G. (2020). Distribution and habitability of (meta)stable brines on present-day Mars. Nature Astronomy, 4, 756–761. https://doi.org/10.1038/s41550-020-1080-9
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding. Series on atmospheric, oceanic and planetary physics (3, p. 256). Retrieved from https://www.worldscientific.com/worldscibooks/10.1142/3171
Schauble, E. A., Rossman, G. R., & Taylor, H. P. (2003). Theoretical estimates of equilibrium chlorine-isotope fractionations. Geochimica et Cosmochimica Acta, 67(17), 3267–3281. https://doi.org/10.1016/s0016-7037(02)01375-3
Sharp, Z. D., Shearer, C. K., McKeegan, K. D., Barnes, J. D., & Wang, Y. Q. (2010). The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science, 329, 1050–1053. https://doi.org/10.1126/science.1192606
Shearer, C. K., Sharp, Z. D., Burger, P. V., McCubbin, F. M., Provencio, P. P., Brearley, A. J., & Steele, A. (2014). Chlorine distribution and its isotopic composition in "rusty rock" 66095. Implications for volatile element enrichments of "rusty rock" and lunar soils, origin of "rusty" alteration, and volatile element behavior on the Moon. Geochimica et Cosmochimica Acta, 139, 411–433. https://doi.org/10.1016/j.gca.2014.04.029
Smith, M. D. (2004). Interannual variability in TES atmospheric observations of Mars during 1999-2003. Icarus, 167, 148–165. https://doi.org/10.1016/j.icarus.2003.09.010
Smith, M. D., Wolff, M. J., Clancy, R. T., Kleinböhl, A., & Murchie, S. L. (2013). Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. Journal of Geophysical Research, 118, 321–334. https://doi.org/10.1002/jgre.20047
Smith, M. L., Claire, M. W., Catling, D. C., & Zahnle, K. J. (2014). The formation of sulfate, nitrate and perchlorate salts in the martian atmosphere. Icarus, 231, 51–64. https://doi.org/10.1016/j.icarus.2013.11.031
Solomon, S. (1999). Stratospheric ozone depletion: A review of concepts and history. Reviews of Geophysics, 37, 275–316. https://doi.org/10.1029/1999rg900008
Urey, H. C., & Greiff, L. J. (1935). Isotopic exchange equilibria. Journal of the American Chemical Society, 57, 321–327. https://doi.org/10.1021/ja01305a026
Vandaele, A. C., Korablev, O., Daerden, F., Aoki, S., Thomas, I. R., Altieri, F., et al. (2019). Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars trace gas orbiter. Nature, 568, 521–525. https://doi.org/10.1038/s41586-019-1097-3
Vandaele, A. C., Lopez-Moreno, J.-J., Patel, M. R., Bellucci, G., Daerden, F., Ristic, B., et al. (2018). NOMAD, an integrated suite of three spectrometers for the ExoMars trace gas mission: Technical description, science objectives and expected performance. Space Science Reviews, 214. https://doi.org/10.1007/s11214-018-0517-2
Vandaele, A. C., Neefs, E., Drummond, R., Thomas, I. R., Daerden, F., Lopez-Moreno, J.-J., et al. (2015). Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planetary and Space Science, 119, 233–249. https://doi.org/10.1016/j.pss.2015.10.003
Villanueva, G. L., Liuzzi, G., Crismani, M. M. J., Aoki, S., Vandaele, A. C., Daerden, F. (2021). Water heavily fractionated as it ascends on mars as revealed by ExoMars/NOMAD. Science Advances, 7, eabc8843. https://doi.org/10.1126/sciadv.abc8843
Villanueva, G. L., Mumma, M. J., Novak, R. E., Radeva, Y. L., Käufl, H. U., Smette, A., et al. (2013). A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus, 223, 11–27. https://doi.org/10.1016/j.icarus.2012.11.013
Villanueva, G. L., Smith, M. D., Protopapa, S., Faggi, S., & Mandell, A. M. (2018). Planetary Spectrum Generator: An accurate online radiative transfer suite for atmospheres, comets, small bodies and exoplanets. Journal of Quantitative Spectroscopy and Radiative Transfer, 217, 86–104. https://doi.org/10.1016/j.jqsrt.2018.05.023
Wallström, S. H. J., Muller, S., Roueff, E., Le Gal, R., Black, J. H., & Gérin, M. (2019). Chlorine-bearing molecules in molecular absorbers at intermediate redshifts. Astronomy and Astrophysics, 629, A128. https://doi.org/10.1051/0004-6361/201935860
Wang, A., Yan, Y., Jolliff, B. L., McLennan, S. M., Wang, K., Shi, E., & Farrell, W. M. (2020). Chlorine release from common chlorides by martian dust activity. Journal of Geophysical Research: Planets, 125, e2019JE006283. https://doi.org/10.1029/2019je006283
Willame, Y., Vandaele, A. C., Depiesse, C., Lefèvre, F., Letocart, V., Gillotay, D., & Montmessin, F. (2017). Retrieving cloud, dust and ozone abundances in the Martian atmosphere using SPICAM/UV nadir spectra. Planetary and Space Science, 142, 9–25. https://doi.org/10.1016/j.pss.2017.04.011
Wilson, E. H., Atreya, S. K., Kaiser, R. I., & Mahaffy, P. R. (2016). Perchlorate formation on 525 Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism. Journal of Geophysical Research: Planets, 121, 1472–1482. https://doi.org/10.1002/2016JE005078
Nevejans, D., Neefs, E., Van Ransbeeck, E., Berkenbosch, S., Clairquin, R., De Vos, L. (2006). Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 μm. Applied Optics, 45, 5191–5206. https://doi.org/10.1364/ao.45.005191
Thomas, I. R., Vandaele, A. C., Robert, S., Neefs, E., Drummond, R., Daerden, F., et al. (2016). Optical and radiometric models of the NOMAD instrument part II: The infrared channels. Optics Express, 23. https://doi.org/10.1364/OE.23.030028
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.