Data set; Dust storm; ExoMars; Hydrogen chloride; Summer season; Trace gas; Vertical distributions; Water ice; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Hydrogen chloride (HCl) was recently discovered in the atmosphere of Mars by two spectrometers onboard the ExoMars Trace Gas Orbiter. The reported detection made in Martian Year 34 was transient, present several months after the global dust storm during the southern summer season. Here, we present the full data set of vertically resolved HCl detections obtained by the NOMAD instrument, which covers also Martian year 35. We show that the particular increase of HCl abundances in the southern summer season is annually repeated, and that the formation of HCl is independent from a global dust storm event. We also find that the vertical distribution of HCl is strikingly similar to that of water vapor, which suggests that the uptake by water ice clouds plays an important role. The observed rapid decrease of HCl abundances at the end of the southern summer would require a strong sink independent of photochemical loss.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Aoki, Shohei ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Daerden, F. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Viscardy, S. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Thomas, I.R. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Erwin, J.T. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Robert, S. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium ; Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Belgium
Trompet, L. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Neary, L. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Villanueva, G.L. ; NASA Goddard Space Flight Center, Greenbelt, United States
Liuzzi, G. ; NASA Goddard Space Flight Center, Greenbelt, United States ; Department of Physics, College of Arts and Sciences, American University, United States
Crismani, M.M.J. ; NASA Goddard Space Flight Center, Greenbelt, United States ; California State University, San Bernardino, United States
Clancy, R.T. ; Space Science Institute, Boulder, United States
Whiteway, J. ; Centre for Research in Earth and Space Science, York University, Toronto, Canada
Schmidt, F. ; Université Paris-Saclay, CNRS, GEOPS, Orsay, France
Lopez-Valverde, M.A. ; Instituto de Astrofisica de Andalucia, Glorieta de la Astronomia, Granada, Spain
Ristic, B. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Patel, M.R. ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom ; Space Science and Technology Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, United Kingdom
Bellucci, G. ; Istituto di Astrofisica e Planetologia Spaziali, Roma, Italy
Lopez-Moreno, J.-J. ; Instituto de Astrofisica de Andalucia, Glorieta de la Astronomia, Granada, Spain
Olsen, K.S. ; Department of Physics, University of Oxford, Oxford, United Kingdom
Lefèvre, F. ; Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS/CNRS), Paris, France
Montmessin, F. ; Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS/CNRS), Paris, France
Trokhimovskiy, A. ; Space Research Institute (IKI), Moscow, Russian Federation
Fedorova, A.A. ; Space Research Institute (IKI), Moscow, Russian Federation
Korablev, O. ; Space Research Institute (IKI), Moscow, Russian Federation
Vandaele, A.C. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
BELSPO - Belgian Science Policy Office ESA - European Space Agency MICINN - Ministerio de Ciencia e Innovacion UK Space Agency ASI - Agenzia Spaziale Italiana Hill Holliday - Hill, Holliday, Connors, Cosmopulos Waterbird Society MICINN - Ministerio de Ciencia e Innovacion F.R.S.-FNRS - Fonds de la Recherche Scientifique NASA - National Aeronautics and Space Administration CNES - Centre National d'Études Spatiales
Funding text :
ExoMars is a space mission of the European Space Agency and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB‐ BIRA), assisted by Co‐PI teams from Spain (IAA‐CSIC), Italy (INAF‐IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office, with the financial and contractual coordination by the European Space Agency Prodex Office (PEA 4000103401 and 4000121493), by the Spanish MICINN through its Plan Nacional and by European funds under grants PGC2018‐101836‐B‐I00 and ESP2017‐87143‐R (MINECO/FEDER), as well as by UK Space Agency through grants ST/V002295/1, ST/V005332/1 ST/S00145X/1 ST/S00145X/1 and ST/T002069/1, and Italian Space Agency through grant 2018‐2‐HH.0. This work was supported by NASA's Mars Program Office under WBS 604796, “Participation in the TGO/NOMAD Investigation of Trace Gases on Mars." The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía (SEV‐2017‐0709). This work was supported by the Belgian Fonds de la Recherche Scientifique‐FNRS under grant numbers 30442502 (ET_HOME) and T.0171.16 (CRAMIC) and Belgian Science Policy Office BrainBe SCOOP and MICROBE Projects. S. A. is “Chargé de Recherches” at the F.R.S.‐FNRS. U.S. investigators were supported by the National Aeronautics and Space Administration. We acknowledge support from the Institut National des Sciences de l'Univers” (INSU), the "Centre National de la Recherche Scientifique" (CNRS) and "Centre National d'Etudes Spatiales" (CNES) through the “Programme National de Planetologie”.ExoMars is a space mission of the European Space Agency and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB- BIRA), assisted by Co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office, with the financial and contractual coordination by the European Space Agency Prodex Office (PEA 4000103401 and 4000121493), by the Spanish MICINN through its Plan Nacional and by European funds under grants PGC2018-101836-B-I00 and ESP2017-87143-R (MINECO/FEDER), as well as by UK Space Agency through grants ST/V002295/1, ST/V005332/1 ST/S00145X/1 ST/S00145X/1 and ST/T002069/1, and Italian Space Agency through grant 2018-2-HH.0. This work was supported by NASA's Mars Program Office under WBS 604796, ?Participation in the TGO/NOMAD Investigation of Trace Gases on Mars." The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the ?Center of Excellence Severo Ochoa? award for the Instituto de Astrof?sica de Andaluc?a (SEV-2017-0709). This work was supported by the Belgian Fonds de la Recherche Scientifique-FNRS under grant numbers 30442502 (ET_HOME) and T.0171.16 (CRAMIC) and Belgian Science Policy Office BrainBe SCOOP and MICROBE Projects. S. A. is ?Charg? de Recherches? at the F.R.S.-FNRS. U.S. investigators were supported by the National Aeronautics and Space Administration. We acknowledge support from the Institut National des Sciences de l'Univers? (INSU), the "Centre National de la Recherche Scientifique" (CNRS) and "Centre National d'Etudes Spatiales" (CNES) through the ?Programme National de Planetologie?.
Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, G. L., Liuzzi, G., Thomas, I. R., et al. (2019). Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. Journal of Geophysical Research: Planets, 124, 3482–3497. https://doi.org/10.1029/2019JE006109
Catling, D. C., Claire, M. W., Zahnle, K. J., Quinn, R. C., Clark, B. C., Hecht, M. H., & Kounaves, S. (2010). Atmospheric origins of perchlorate on Mars and in the Atacama. Journal of Geophysical Research, 115, E00E11. https://doi.org/10.1029/2009JE003425
Daerden, F., Neary, L., Viscardy, S., García Muñoz, A., Clancy, R. T., Smith, M. D., et al. (2019). Mars atmospheric chemistry simulations with the GEM-Mars general circulation model. Icarus, 326, 197–224. https://doi.org/10.1016/j.icarus.2019.02.030
Fedorova, A. A., Montmessin, F., Korablev, O., Luginin, M., Trokhimovskiy, A., Belyaev, D. A., et al. (2020). Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, 367(6475), 297–300. https://doi.org/10.1126/science.aay9522
Gamache, R. R., Farese, M., & Renaud, C. L. (2016). A spectral line list for water isotopologues in the 1100-4100 cm−1 region for application to CO2-rich planetary atmospheres. Journal of Molecular Spectroscopy, 326, 144–150. https://doi.org/10.1016/j.jms.2015.09.001
Glavin, D. P., Freissinet, C., Miller, K. E., Eigenbrode, J. L., Brunner, A. E., Buch, A., et al. (2013). Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. Journal of Geophysical Research: Planets, 118, 1955–1973. https://doi.org/10.1002/jgre.20144
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., et al. (2017). The HITRAN2016 Molecular Spectroscopic Database. Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 3–69. https://doi.org/10.1016/j.jqsrt.2017.06.038
Hartogh, P., Jarchow, C., Lellouch, E., de Val-Borro, M., Rengel, M., Moreno, R., et al. (2010). Herschel/HIFI observations of Mars: First detection of O2 at submillimetre wavelengths and upper limits on HCl and H2O2. A&A, 521, L49. https://doi.org/10.1051/0004-6361/201015160
Hecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M. M., Ming, D. W., et al. (2009). Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site. Science, 325, 64–67. https://doi.org/10.1126/science.1172466
Kippenberger, M., Schuster, G., Lelieveld, J., & Crowley, J. N. (2019). Trapping of HCl and oxidised organic trace gases in growing ice at temperatures relevant to cirrus clouds. Atmospheric Chemistry and Physics, 19, 11939–11951. https://doi.org/10.5194/acp-19-11939-2019
Knutsen, E. W., Villanueva, G. L., Liuzzi, G., Crismani, M. M. J., Mumma, M. J., Smith, M. D., et al. (2021). Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus, 357, 114266. https://doi.org/10.1016/j.icarus.2020.114266
Korablev, O., Olsen, K. S., Trokhimovskiy, A., Lefèvre, F., Montmessin, F., Fedorova, A. A., et al. (2021). Transient HCl in the atmosphere of Mars, to appear in science advances. Science Advances, 7, eabe4386.
Korablev, O., Vandaele, A. C., Vandaele, A. C., Montmessin, F., Fedorova, A. A., Trokhimovskiy, A., et al. (2019). No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 568, 517–520. https://doi.org/10.1038/s41586-019-1096-4
Krasnopolsky, V. A., Bjoraker, G. L., Mumma, M. J., & Jennings, D. E. (1997). High-resolution spectroscopy of Mars at 3.7 and 8 μm: A sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO. Journal of Geophysical Research, 102(E3), 6525–6534. https://doi.org/10.1029/96JE03766
Lefèvre, F., & Krasnopolsky, V. (2017). Atmospheric photochemistry. In R. M. Haberle, R. T. Clancy, F. Forget, M. D. Smith, & R. W. Zurek (Eds.), The atmosphere and climate of Mars (pp. 405–432). Cambridge University Press.
Liuzzi, G., Villanueva, G. L., Crismani, M. M. J., Smith, M. D., Mumma, M. J., Daerden, F., et al. (2020). Strong variability of Martian water ice clouds during dust storms revealed from ExoMars Trace Gas Orbiter/NOMAD. Journal of Geophysical Research: Planets, 125. https://doi.org/10.1029/2019JE006250
Liuzzi, G., Villanueva, G. L., Viscardy, S., Mège, D., Crismani, M. M. J., Aoki, S., et al. (2021). Probing the atmospheric Cl isotopic ratio on mars: Implications for planetary evolution and atmospheric chemistry. Geophysical Research Letters, 48. https://doi.org/10.1029/2021GL092650
Mahieux, A., Wilquet, V., Vandaele, A. C., Robert, S., Drummond, R., Chamberlain, S., et al. (2015). Hydrogen halides measurements in the Venus mesosphere retrieved from SOIR on board Venus express. Planetary and Space Science, 113–114, 264–274. https://doi.org/10.1016/j.pss.2014.12.014
McKeachie, J. R., Appel, M. F., Kirchner, U., Schindler, R. N., & Benter, T. (2004). Observation of a Heterogeneous Source of OClO from the Reaction of ClO Radicals on Ice. Journal of Physical Chemistry B, 108, 16786–16797. https://doi.org/10.1021/jp049314p
Montabone, L., Forget, F., Millour, E., Wilson, R. J., Lewis, S. R., Cantor, B., et al. (2015). Eight-year climatology of dust optical depth on Mars. Icarus, 251, 65–95. https://doi.org/10.1016/j.icarus.2014.12.034
Montabone, L., Spiga, A., Kass, D. M., Kleinböhl, A., Forget, F., & Millour, E. (2020). Martian year 34 column dust climatology from mars climate sounder observations: Reconstructed maps and model simulations. Journal of Geophysical Research: Planets, 125. https://doi.org/10.1029/2019JE006111
Neary, L., & Daerden, F. (2018). The GEM-Mars general circulation model for Mars: Description and evaluation. Icarus, 300, 458–476. https://doi.org/10.1016/j.icarus.2017.09.028
Neary, L., Daerden, F., Aoki, S., Whiteway, J., Clancy, R. T., Smith, M., et al. (2020). Explanation for the Increase in High-Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm. Geophysical Research Letters, 47, e2019GL084354. https://doi.org/10.1029/2019GL084354
Neefs, E., Vandaele, A. C., Drummond, R., Thomas, I. R., Berkenbosch, S., Clairquin, R., et al. (2015). NOMAD spectrometer on the ExoMars trace gas orbiter mission: Part 1-design, manufacturing and testing of the infrared channels. Applied Optics, 54(28), 8494–8520. https://doi.org/10.1364/AO.54.008494
Osterloo, M. M., Hamilton, V. E., Bandfield, J. L., Glotch, T. D., Baldridge, A. M., Christensen, P. R., et al. (2008). Chloride-bearing materials in the southern highlands of Mars. Science, 319(5870), 1651–1654. https://doi.org/10.1126/science.1150690
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding - theory and practice, inverse methods for atmospheric sounding - theory and practice. Series: Series on atmospheric oceanic and planetary physics (Vol. 2). World Scientific Publishing Co. Pte. Ltd. https://doi.org/10.1142/9789812813718
Sandor, B. J., & Todd Clancy, R. (2018). First measurements of ClO in the Venus atmosphere - Altitude dependence and temporal variation. Icarus, 313, 15–24. https://doi.org/10.1016/j.icarus.2018.04.022
Smith, M. D. (2002). The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer. Journal of Geophysical Research, 107, 25–31. https://doi.org/10.1029/2001JE001522
Smith, M. D. (2006). TES Atmospheric Temperature, Aerosol, Optical Depth, and Water Vapor Observations 1999-2004. Second workshop on Mars atmospheric modeling and observations. Granada, Spain.
Smith, M. L., Claire, M. W., Catling, D. C., & Zahnle, K. J. (2014). The formation of sulfate, nitrate and perchlorate salts in the martian atmosphere. Icarus, 231, 51–64. https://doi.org/10.1016/j.icarus.2013.11.031
Solomon, S. (1999). Stratospheric ozone depletion: A review of concepts and history. Reviews of Geophysics, 37, 275–316. https://doi.org/10.1029/1999RG900008
Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., Tang, Y., Carmichael, G. R., & Prather, K. A. (2007). Mineral dust is a sink for chlorine in the marine boundary layer. Atmospheric Environment, 41, 7166–7179. https://doi.org/10.1016/j.atmosenv.2007.05.047
Vandaele, A. C., Lopez-Moreno, J.-J., Patel, M. R., Bellucci, G., Daerden, F., Ristic, B., et al. (2018). NOMAD, an integrated suite of three spectrometers for the ExoMars Trace Gas mission: Technical description, science objectives and expected performance, Space Science Reviews, 214, 5, 80, https://doi.org/10.1007/s11214-018-0517-2
Vandaele, A. C., Korablev, O., Korablev, O., Daerden, F., Aoki, S., Thomas, I. R., et al. (2019). Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 568, 521–525. https://doi.org/10.1038/s41586-019-1097-3
Vandaele, A. C., Kruglanski, M., & De Maziere, M. (2006). Simulation and retrieval of atmospheric spectra using ASIMUT, paper presented at Atmospheric Science Conference. Frascati: Eur. Space Agency.
Villanueva, G. L., Liuzzi, G., Crismani, M. M. J., Aoki, S., Vandaele, A. C., Daerden, F., et al. (2021). Water heavily fractionated as it ascends on Mars as revealed by ExoMars/NOMAD. Science Advance, 7(7), eabc8843. https://doi.org/10.1126/sciadv.abc8843
Villanueva, G. L., Mumma, M. J., Novak, R. E., Radeva, Y. L., Käufl, H. U., Smette, A., et al. (2013). A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus, 223, 11–27. https://doi.org/10.1016/j.icarus.2012.11.013
Waugh, D. W., Toigo, A. D., Guzewich, S. D., & Mahaffy, P. R. (2019). Age of martian air: Time scales for martian atmospheric transport. Icarus, 317, 148–157. https://doi.org/10.1016/j.icarus.2018.08.002
Wilquet, V., Drummond, R., Mahieux, A., Robert, S., Vandaele, A. C., & Bertaux, J.-L. (2012). Optical extinction due to aerosols in the upper haze of Venus: Four years of SOIR/VEX observations from 2006 to 2010. Icarus, 217, 875–881. https://doi.org/10.1016/j.icarus.2011.11.002
Wilson, E. H., Atreya, S. K., Kaiser, R. I., & Mahaffy, P. R. (2016). Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism. Journal of Geophysical Research: Planets, 121, 1472–1487. https://doi.org/10.1002/2016JE005078
Wu, Z., Wang, A., Farrell, W. M., Yan, Y., Wang, K., Houghton, J., & Jackson, A. W. (2018). Forming perchlorates on Mars through plasma chemistry during dust events. Earth and Planetary Science Letters, 504, 94–105. https://doi.org/10.1016/j.epsl.2018.08.040