ExoMars; Mars; ozone; Solar occultation; spectroscopy; ultraviolet observations; Geochemistry and Petrology; Geophysics; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science
Abstract :
[en] We present ∼1.5 Mars Years (MY) of ozone vertical profiles, covering LS = 163° in MY34 to LS = 320° in MY35, a period which includes the 2018 global dust storm. Since April 2018, the Ultraviolet and Visible Spectrometer channel of the Nadir and Occultation for Mars Discovery (NOMAD) instrument aboard the ExoMars Trace Gas Orbiter has observed the vertical, latitudinal and seasonal distributions of ozone. Around perihelion, the relative abundance of both ozone and water (from coincident NOMAD measurements) increases with decreasing altitude below ∼40 km. Around aphelion, localized decreases in ozone abundance exist between 25 and 35 km coincident with the location of modeled peak water abundances. High-latitude (>±55°), high altitude (40–55 km) equinoctial ozone enhancements are observed in both hemispheres (LS ∼350°–40°) and discussed in the companion article to this work (Khayat et al., 2021). The descending branch of the main Hadley cell shapes the observed ozone distribution at LS = 40°–60°, with the possible signature of a northern hemisphere thermally indirect cell identifiable from LS = 40°–80°. Morning terminator observations show elevated ozone abundances with respect to evening observations, with average ozone abundances between 20 and 40 km an order of magnitude higher at sunrise compared to sunset, attributed to diurnal photochemical partitioning along the line of sight between ozone and O or fluctuations in water abundance. The ozone retrievals presented here provide the most complete global description of Mars ozone vertical distributions to date as a function of season and latitude.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Patel, M.R. ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom ; Space Science and Technology Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
Sellers, G. ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Mason, J.P. ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Holmes, J.A. ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Brown, M.A.J.; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Lewis, S.R. ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Rajendran, K.; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Streeter, P.M. ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Marriner, C.; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Hathi, B.G.; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Slade, D.J.; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Leese, M.R.; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Wolff, M.J. ; Space Science Institute, Boulder, United States
Khayat, A.S.J. ; NASA Goddard Space Flight Center, Greenbelt, United States ; Center for Research and Exploration in Space Science and Technology II, University of Maryland, College Park, United States
Smith, M.D. ; NASA Goddard Space Flight Center, Greenbelt, United States
Aoki, Shohei ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Piccialli, A. ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Vandaele, A.C.; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Robert, S. ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium ; Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Daerden, F. ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Thomas, I.R. ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Ristic, B. ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Willame, Y.; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Depiesse, C.; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Bellucci, G.; Istituto di Astrofisica e Planetologia Spaziali, IAPS-INAF, Rome, Italy
Lopez-Moreno, J.-J.; Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia, Granada, Spain
UK Space Agency NASA - National Aeronautics and Space Administration SFTC - Science and Technology Facilities Council BELSPO - Belgian Science Policy Office MICINN - Ministerio de Ciencia e Innovacion Open University
Funding text :
The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB-BIRA), with Co-PI teams in the United Kingdom (Open University), Spain (IAA-CSIC) and Italy (INAF-IAPS). This work was enabled through UK Space Agency grants ST/V002295/1, ST/P001262/1, ST/V005332/1, ST/S00145X/1 and ST/R001405/1, and this project acknowledges funding by the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493), by Spanish Ministry of Science and Innovation (MCIU) and by European funds under grants PGC2018-101836-B-I00 and ESP2017-87143-R (MINECO/FEDER), as well as by the Italian Space Agency through grant 2018-2-HH.0. Support is acknowledged from the STFC under Grant ST/N50421X/1 and The Open University for a PhD studentship. This work was supported by the Belgian Fonds de la Recherche Scientifique – FNRS under grant number 30442502 (ET_HOME). S. A. is “Chargé de Recherches” at the F.R.S.-FNRS. SR thanks BELSPO for the FED-tWIN funding (PRF-2019-077 - RT-MOLEXO). This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101004052 (RoadMap project). The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa" award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709). US investigators were supported by the National Aeronautics and Space Administration.The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB‐BIRA), with Co‐PI teams in the United Kingdom (Open University), Spain (IAA‐CSIC) and Italy (INAF‐IAPS). This work was enabled through UK Space Agency grants ST/V002295/1, ST/P001262/1, ST/V005332/1, ST/S00145X/1 and ST/R001405/1, and this project acknowledges funding by the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493), by Spanish Ministry of Science and Innovation (MCIU) and by European funds under grants PGC2018‐101836‐B‐I00 and ESP2017‐87143‐R (MINECO/FEDER), as well as by the Italian Space Agency through grant 2018‐2‐HH.0. Support is acknowledged from the STFC under Grant ST/N50421X/1 and The Open University for a PhD studentship. This work was supported by the Belgian Fonds de la Recherche Scientifique – FNRS under grant number 30442502 (ET_HOME). S. A. is “Chargé de Recherches” at the F.R.S.‐FNRS. SR thanks BELSPO for the FED‐tWIN funding (PRF‐2019‐077 ‐ RT‐MOLEXO). This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101004052 (RoadMap project). The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa" award for the Instituto de Astrofísica de Andalucía (SEV‐2017‐0709). US investigators were supported by the National Aeronautics and Space Administration.
Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, G. L., Liuzzi, G., Thomas, I. R., et al. (2019). Water vapor vertical profile on Mars in dust storms observed by TGO/NOMAD. Journal of Geophysical Research: Planets, 124, 3482–3497. https://doi.org/10.1029/2019JE006109
Auvinen, H., Oikarinen, L., & Kyrölä, E. (2002). Inversion algorithms for recovering minor species densities from limb scatter measurements at UV-visible wavelengths. Journal of Geophysical Research, 107, D13. https://doi.org/10.1029/2001JD000407
Barnes, J., Haberle, R., Wilson, R., Lewis, S., Murphy, J., & Read, P. (2017). The global circulation. In R. Haberle, R. Clancy, F. Forget, M. Smith, & R. Zurek (Eds.), The atmosphere and climate of Mars (Cambridge Planetary Science (pp. 229–294). Cambridge University Press. https://doi.org/10.1017/9781139060172.009
Barth, C. A., & Hord, C. W. (19711971). Mariner ultraviolet spectrometer: Topography and polar cap. Science, 173, 197–201. https://doi.org/10.1126/science.173.3993.197
Barth, C. A., Hord, C. W., Stewart, A. I., Lane, A. L., Dick, M. L., & Anderson, G. P. (1973). Mariner 9 ultraviolet spectrometer experiment: Seasonal variation of ozone on Mars. Science, 179(4075), 795–796. https://doi.org/10.1126/science.179.4075.795
Bellucci, A., Sicardy, B., Drossart, P., Rannou, P., Nicholson, P. D., Hedman, M., et al. (2009). Titan solar occultation observed by Cassini/VIMS: Gas absorption and constraints on aerosol composition. Icarus, 201, 198–216. https://doi.org/10.1016/j.icarus.2008.12.024
Bétrémieux, Y., & Kaltenegger, L. (2015). Refraction in planetary atmospheres: Improved analytical expressions and comparison with a new ray-tracing algorithm. Monthly Notices of the Royal Astronomical Society, 451(2), 1268–1283. https://doi.org/10.1093/mnras/stv1078
Blamont, J. E., & Chassefière, E. (1993). First detection of ozone in the middle atmosphere of Mars from solar occultation measurements. Icarus, 104(2), 324–336. https://doi.org/10.1006/icar.1993.1104
Clancy, R. T., Grossman, A. W., Wolff, M. J., James, P. B., Billawala, Y. N., Sandor, B. J., et al. (1996). Water vapor saturation at low altitudes around Mars aphelion: A key to Mars climate? Icarus, 122, 36–62. https://doi.org/10.1006/icar.1996.0108
Clancy, R. T., & Nair, H. (1996). Annual (perihelion-aphelion) cycles in the photochemical behavior of the global Mars atmosphere. Journal of Geophysical Research: Planets, 101(E5), 12785–12790. https://doi.org/10.1029/96je00836
Clancy, R. T., Smith, M. D., Lefèvre, F., McConnochie, T. H., Sandor, B. J., Wolff, M. J., et al. (2017). Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and inferences on Mars water vapor distributions. Icarus, 293, 132–156. https://doi.org/10.1016/j.icarus.2017.04.011
Clancy, R. T., Wolff, M. J., & James, P. B. (1999). Minimal aerosol loading and global increases in atmospheric ozone during the 1996–1997 Martian northern spring season. Icarus, 138, 49–63. https://doi.org/10.1006/icar.1998.6059
Clancy, R. T., Wolff, M. J., Lefèvre, F., Cantor, B. A., Malin, M. C., & Smith, M. D. (2016). Daily global mapping of Mars ozone column abundances with MARCI UV band imaging. Icarus, 266, 112–133. https://doi.org/10.1016/j.icarus.2015.11.016
Colaïtis, A., Spiga, A., Hourdin, F., Rio, C., Forget, F., & Millour, E. (2013). A thermal plume model for the Martian convective boundary layer. Journal of Geophysical Research, 118, 1468–1487.
Daerden, F., Neary, L., Viscardy, S., García Muñoz, A., Clancy, R. T., Smith, M. D., et al. (2019). Mars atmospheric chemistry simulations with the GEM-Mars general circulation model. Icarus, 326, 197–224. https://doi.org/10.1016/j.icarus.2019.02.030
Fast, K., Kostiuk, T., Espenak, F., Annen, J., Buhl, D., Hewagama, T., et al. (2006). Ozone abundance on Mars from infrared heterodyne spectra: I. Acquisition, retrieval, and anticorrelation with water vapor. Icarus, 181(2), 419–431. https://doi.org/10.1016/j.icarus.2005.12.001
Fedorova, A., Bertaux, J.-P., Betsis, D., Montmessin, F., Korablev, O., Maltagliati, L., & Clarke, J. (2018). Water vapor in the middle atmosphere of Mars during the 2007 global dust storm. Icarus, 200, 440–457. https://doi.org/10.1016/j.icarus.2017.09.025
Fedorova, A., Korablev, O., Perrier, S., Bertaux, J.-L., Lefèvre, F., & Rodin, A. (2006). Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions. Journal of Geophysical Research Atmospheres, 111, E09S08. https://doi.org/10.1029/2006je002695
Fedorova, A., Montmessin, F., Korablev, O., Luginin, M., Trokhimovskiy, A., Belyaev, D. A., et al. (2020). Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, 367, 297–300. https://doi.org/10.1126/science.aay9522
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104(E10), 24155–24175. https://doi.org/10.1029/1999je001025
Gröller, H., Montmessin, F., Yelle, R. V., Lefèvre, F., Forget, F., Schneider, N. M., et al. (2018). MAVEN/IUVS stellar occultation measurements of Mars atmospheric structure and composition. Journal of Geophysical Research: Planets, 123, 1449–1483.
Guzewich, S. D., Lemmon, M., Smith, C. L., Martínez, G., de Vicente-Retortillo, Á., Newman, C. E., et al. (2019). Mars Science Laboratory observations of the 2018/Mars Year 34 global dust storm. Geophysical Research Letters, 46, 71–79. https://doi.org/10.1029/2018GL080839
Heavens, N. G., Kleinböhl, A., Chaffin, M. S., Halekas, J. S., Kass, D. M., Hayne, P. O., et al. (2018). Hydrogen escape from Mars enhanced by deep convection in dust storms. Nature Astronomy, 2, 126–132. https://doi.org/10.1038/s41550-017-0353-4
Holmes, J. A., Lewis, S. R., & Patel, M. R. (2017). On the link between Martian total ozone and potential vorticity. Icarus, 282, 104–117. https://doi.org/10.1016/j.icarus.2016.10.004
Holmes, J. A., Lewis, S. R., & Patel, M. R. (2020). OpenMARS: A global record of Martian weather from 1999–2015. Planetary and Space Science, 188, 1049462. https://doi.org/10.1016/j.pss.2020.104962
Holmes, J. A., Lewis, S. R., Patel, M. R., & Lefèvre, F. (2018). A reanalysis of ozone on Mars from assimilation of SPICAM observations. Icarus, 302, 308–318. https://doi.org/10.1016/j.icarus.2017.11.026
Holmes, J. A., Lewis, S. R., Patel, M. R., & Smith, M. D. (2019). Global analysis and forecasts of carbon monoxide on Mars. Icarus, 328, 232–245. https://doi.org/10.1016/j.icarus.2019.03.016
Hubbard, W. B., Fortney, J. J., Lunine, J. I., Burrows, A., Sudarsky, D., & Pinto, P. (2001). Theory of extrasolar giant planet transits. The Astrophysical Journal, 560(1), 413–419. https://doi.org/10.1086/322490
Ityaksov, D., Linnartzm, H., & Ubachs, W. (2008). Deep-UV absorption and Rayleigh scattering of carbon dioxide. Chemical Physics Letters, 462, 31–34. https://doi.org/10.1016/j.cplett.2008.07.049
Jakosky, B. M., & Farmer, C. B. (1982). The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking Atmospheric Water Detector Experiment. Journal of Geophysical Research, 87, 2999–3019. https://doi.org/10.1029/jb087ib04p02999
Kass, D. M., Kleinböhl, A., McCleese, D. J., Schofiled, J. T., & Smith, M. D. (2016). Interannual similarity in the Martian atmosphere during the dust storm season. Geophysical Research Letters, 43, 6111–6118. https://doi.org/10.1002/2016gl068978
Khayat, A. S. J., Smith, M. D., & Guzewich, S. D. (2019). Understanding the water cycle above the north polar cap on Mars using MRO CRISM retrievals of water vapor. Icarus, 321, 722–735. https://doi.org/10.1016/j.icarus.2018.12.024
Khayat, A. S. J., Smith, M. D., Wolff, M. J., Daerden, F., Neary, L., Patel, M. R., et al. (2021). ExoMars TGO/NOMAD-UVIS vertical profiles of ozone: Part 2: The high-altitude peaks of atmospheric ozone. Journal of Geophysical Research: Planets, 126, e2021JE006834. https://doi.org/10.1029/2021JE006834
Kleinböhl, A., Friedson, A. J., & Schofield, J. T. (2017). Two-dimensional radiative transfer for the retrieval of limb emission measurements in the Martian atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 187, 511–522.
Kong, T. Y., & McElroy, M. B. (1977). Photochemistry of the Martian Atmosphere. Icarus, 32, 168–189. https://doi.org/10.1016/0019-1035(77)90058-6
Korablev, O., Olsen, K. S., Trokhimovskiy, A., Lefèvre, F., Montmessin, F., Fedorova, A. A., et al. (2021). Transient HCl in the atmosphere of Mars. Science Advances, 7(7). https://doi.org/10.1126/sciadv.abe4386
Korablev, O., Vandaele, A. C., Montmessin, F., Fedorova, A. A., Trokhimovskiy, A., Forget, F., et al. (2019). No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 568, 517–520. https://doi.org/10.1038/s41586-019-1096-4
Lebonnois, S., Quémerais, E., Montmessin, F., Lefèvre, F., Perrier, S., Bertaux, J.-L., & Forget, F. (2006). Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations. Journal of Geophysical Research: Planets, 111(E9). https://doi.org/10.1029/2005je002643
Lefèvre, F., Bertaux, J.-L., Clancy, R. T., Encrenaz, T., Fast, K., Forget, F., et al. (2008). Heterogeneous chemistry in the atmosphere of Mars. Nature, 454, 971.
Lefèvre, F., & Krasnopolsky, V. (2017). Atmospheric photochemistry. In R. M. Haberle, R. Todd Clancy, F. Forget, M. D. Smith, & R. W. Zurek (Eds.), The atmosphere and climate of Mars (pp. 405–432). Cambridge University Press. (chapter 13).
Lefèvre, F., Lebonnois, S., Montmessin, F., & Forget, F. (2004). Three-dimensional modeling of ozone on Mars. Journal of Geophysical Research: Planets, 109(E7).
Lefèvre, F., Trokhimovskiy, A., Fedorova, A., Baggio, L., Lacombe, G., Määttänen, A., et al. (2021). Relationship between the ozone and water vapor columns on Mars as observed by SPICAM and calculated by a global climate model. Journal of Geophysical Research: Planets, 126, e2021JE006838. https://doi.org/10.1029/2021JE006838
Lemoine, F. G., Smith, D. E., Rowlands, D. D., Zuber, M. T., Neumann, G. A., Chinn, D. S., & Pavlis, D. E. (2001). An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. Journal of Geophysical Research, 106(E10), 23359–23376. https://doi.org/10.1029/2000JE001426
Lewis, S. R., Read, P. L., Conrath, B. J., Pearl, J. C., & Smith, M. D. (2007). Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period. Icarus, 192(2), 327–347. https://doi.org/10.1016/j.icarus.2007.08.009
Liuzzi, G., Villanueva, G. L., Crismani, M. M. J., Smith, M. D., Mumma, M. J., Daerden, F., et al. (2020). Strong variability of Martian water ice clouds during dust storms revealed from ExoMars Trace Gas Orbiter/NOMAD. Journal of Geophysical Research: Planets, 124. https://doi.org/10.1029/2019JE006250
Malicet, J., Daumont, D., Charbonnier, J., Parisse, C., Chakir, A., & Brion, J. (1995). Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence. Journal of Atmospheric Chemistry, 21, 263–273. https://doi.org/10.1007/bf00696758
Maltagliati, L., Montmessin, F., Korablev, O., Fedorova, A., Forget, F., Määttänen, A., et al. (2013). Annual survey of water vapor vertical distribution and water-aerosol coupling in the Martian atmosphere observed by SPICAM/MEx solar occultations. Icarus, 223, 942–962. https://doi.org/10.1016/j.icarus.2012.12.012
McElroy, M. B., & Donahue, T. M. (1972). Stability of the Martian atmosphere. Science, 177(4053), 986–988. https://doi.org/10.1126/science.177.4053.986
Montabone, L., Lewis, S. R., Read, P. L., & Hinson, D. P. (2006). Validation of Martian meteorological data assimilation for MGS/TES using radio occultation measurements. Icarus, 185, 113–132. https://doi.org/10.1016/j.icarus.2006.07.012
Montabone, L., Marsh, K., Lewis, S. R., Read, P. L., Smith, M. D., Holmes, J., et al. (2014). The Mars analysis correction data assimilation (MACDA) data set V1.0. Geoscience Data Journal, 1(2), 129–139. https://doi.org/10.1002/gdj3.13
Montabone, L., Spiga, A., Kass, D. M., Kleinböhl, A., Forget, F., & Millour, E. (2020). Martian year 34 column dust climatology from Mars climate sounder observations: Reconstructed maps and model simulations. Journal of Geophysical Research: Planets. https://doi.org/10.1029/2019je006111
Montmessin, F., Forget, F., Rannou, P., Cabane, M., & Haberle, R. M. (2004). Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. Journal of Geophysical Research, 109, E10004. https://doi.org/10.1029/2004je002284
Montmessin, F., & Lefèvre, F. (2013). Transport-driven formation of a polar ozone layer on Mars. Nature Geoscience, 6, 930–933. https://doi.org/10.1038/ngeo1957
Nair, H., Allen, M., Anbar, A. D., Yung, Y. L., & Clancy, R. (1994). A photochemical model of the Martian atmosphere. Icarus, 111(1), 124–150. https://doi.org/10.1006/icar.1994.1137
Navarro, T., Madeleine, J.-B., Forget, F., Spiga, A., Millour, E., Montmessin, F., & Määttänen, A. (2014). Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. The Journal of Geophysical Research: Planets, 119, 1479–1495. https://doi.org/10.1002/2013je004550
Neary, L., Daerden, F., Aoki, S., Whiteway, J., Clancy, R. T., Smith, M., et al. (2020). Explanation for the increase in high-altitude water on Mars observed by NOMAD during the 2018 global dust storm. Geophysical Research Letters, 47(7), 1–9. https://doi.org/10.1029/2019gl084354
Newman, C. E., Lewis, S. R., Read, P. L., & Forget, F. (2002). Modeling the Martian dust cycle, 1. Representations of dust transport processes. Journal of Geophysical Research, 107, 5123. https://doi.org/10.1029/2002je001910
Olsen, K. S., Lefèvre, F., Montmessin, F., Trokhimovskiy, A., Baggio, L., Fedorova, A., et al. (2020). First detection of ozone in the mid-infrared at Mars: Implications for methane detection. Astronomy & Astrophyiscs, 639, A141. https://doi.org/10.1051/0004-6361/202038125
Pankine, A., & Tamppari, L. K. (2019). MGS TES observations of the water vapor in the Martian southern polar atmosphere during spring and summer. Icarus, 331, 26–48. https://doi.org/10.1016/j.icarus.2019.05.010
Parkinson, T. D., & Hunten, D. M. (1972). Spectroscopy and Aeronomy of O2 on Mars. Journal of Atmospheric Sciences, 29, 1380–1390. https://doi.org/10.1175/1520-0469(1972)029<1380:saaooo>2.0.co;2
Patel, M. R. (2021) Data set in support of paper “ExoMars TGO/NOMAD-UVIS profiles of ozone in Mars Years 34–35: Part 1—Vertical distribution and comparison to water” [Data set] Open Research Data Online (ORDO) repository. https://doi.org/10.21954/ou.rd.13580336
Patel, M. R., Antoine, P., Mason, J. P., Leese, M. R., Hathi, B., Stevens, A. H., et al. (2017). NOMAD spectrometer on the ExoMars Trace Gas Orbiter mission: Part 2—Design, manufacturing, and testing of the ultraviolet and visible channel. Applied Optics, 56(10), 2771–2782. https://doi.org/10.1364/ao.56.002771
Perrier, S., Bertaux, J. L., Lefèvre, F., Lebonnois, S., Korablev, O., Fedorova, A., & Montmessin, F. (2006). Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. Journal of Geophysical Research, 111(E9). https://doi.org/10.1029/2006je002681
Piccialli, A., Vandaele, A. C., Trompet, L., Neary, L., Viscardy, S., Erwin, J. T., et al. (2021). Impact of gradients at the Martian terminator on the retrieval of ozone from SPICAM/MEX. Icarus, 353, 113598. https://doi.org/10.1016/j.icarus.2019.113598
Quémerais, E., Bertaux, J.-L., Korablev, O., Dimarellis, E., Cot, C., Sandel, B. R., & Fussen, D. (2006). Stellar occultations observed by SPICAM on Mars Express. Journal of Geophysical Research, 111, E09S04. https://doi.org/10.1029/2005JE002604
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding (p. 238)Hackensack, N.J: World Sci.
Shimazaki, T., & Shimizu, M. (1979). The seasonal variation of ozone density in the Martian atmosphere. Journal of Geophysical Research: Space Physics, 84(A4), 1269–1276. https://doi.org/10.1029/ja084ia04p01269
Smith, M. D. (2004). Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus, 167, 148–165. https://doi.org/10.1016/j.icarus.2003.09.010
Smith, M. D. (2019). THEMIS observations of the 2018 Mars global dust storm. Journal of Geophysical Research: Planets, 124, 2929–2944. https://doi.org/10.1029/2019JE006107
Smith, M. D., Wolff, M. J., Clancy, R. T., & Murchie, S. L. (2009). CRISM observations of water vapor and carbon monoxide. Journal of Geophysical Research, 114(E9). https://doi.org/10.1029/2008JE003288
Snow, M., Machol, J., Viereck, R., Woods, T., Weber, M., Woodraska, D., & Elliott, J. (2019). A revised Magnesium II core-to-wing ratio from SORCE SOLSTICE. Earth and Space Science, 6, 2106–2114. https://doi.org/10.1029/2019EA000652
Steel, L. J., Lewis, S. R., Patel, M. R., Montmessin, F., Forget, F., & Smith, M. D. (2014). The seasonal cycle of water vapor on Mars from assimilation of thermal emission spectrometer data. Icarus, 237, 91–115. https://doi.org/10.1016/j.icarus.2014.04.017
Streeter, P. M., Lewis, S. R., Patel, M. R., Holmes, J. A., & Kass, D. M. (2020). Surface warming during the 2018/Mars Year 34 global dust storm. Geophysical Research Letters, 47(9), e2019GL083936. https://doi.org/10.1029/2019gl083936
Trompet, L., Mahieux, A., Ristic, B., Robert, S., Wilquet, V., Thomas, I. R., et al. (2016). Improved algorithm for the transmittance estimation of spectra obtained with SOIR/Venus Express. Applied Optics, 55(32), 9275. https://doi.org/10.1364/AO.55.009275
Vandaele, A. C., Korablev, O., Daerden, F., Aoki, S., Thomas, I. R., Altieri, F., et al. (2019). Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 568, 521–525.
Vandaele, A. C., Lopez-Moreno, J. -J., Patel, M. R., Bellucci, G., Daerden, F., Ristic, B., et al. (2018). NOMAD, an integrated suite of three spectrometers for the ExoMars Trace Gas Mission: Technical description, science objectives, and expected performance. Space Science Reviews, 214(5). https://doi.org/10.1007/s11214-018-0517-2
Vandaele, A. C., Neefs, E., Drummond, R., Thomas, I. R., Daerden, F., Lopez-Moreno, J.-J., et al. (2015). Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planetary and Space Science, 119, 233–249. https://doi.org/10.1016/j.pss.2015.10.003