atmosphere; Mars; Trace Gas Orbiter; water vapor; Geochemistry and Petrology; Geophysics; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science
Abstract :
[en] Slightly less than a Martian Year of nominal science (March 2018–January 2020) with the ExoMars Trace Gas Orbiter has furthered the ongoing investigation of dayside water vapor column abundance. These dayside observations span latitudes between 75°S and 75°N, and all longitudes, which can provide global snapshots of the total water column abundances. In addition to tracking the seasonal transport of water vapor between poles, geographic enhancements are noted, particularly in the southern hemisphere, both in Hellas Basin, and in other regions not obviously correlated to topography. We report consistent water vapor climatology with previous spacecraft observations, however, note a difference in total water vapor content is noted. Finally, we are unable to find evidence for substantial diurnal variation in the total dayside water vapor column.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Crismani, M.M.J. ; Planetary Systems Laboratory, NPP/USRA, NASA Goddard Space Flight Center, Greenbelt, United States ; Department of Physics, California State University, San Bernardino, San Bernardino, United States
Villanueva, G.L.; Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, United States
Liuzzi, G. ; Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, United States ; Department of Physics, College of Arts and Sciences, American University, Washington, United States
Smith, M.D. ; Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, United States
Knutsen, E.W. ; Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, United States ; Department of Physics, College of Arts and Sciences, American University, Washington, United States
Daerden, F. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Neary, L. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Mumma, M.J.; Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, United States
Aoki, Shohei ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Trompet, L. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Thomas, I.R. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Ristic, B. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Bellucci, G. ; Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Piccialli, A. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Robert, S. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium ; Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Mahieux, A.; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Lopez Moreno, J.-J. ; Instituto de Astrofísica de Andalucía, Granada, Spain
Sindoni, G.; Agenzia Spaziale Italiana (ASI), Rome, Italy
Giuranna, M.; Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Patel, M.R. ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom ; Space Science and Technology Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
Vandaele, A.C. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
M. M. J. Crismani is supported by the NASA Postdoctoral Program at the NASA Goddard Space Flight Center, administered by Universities Space Research Association (USRA) under contract with the NASA. This research was supported by the NASA, under grant number GSFC‐604796. ExoMars is a space mission of the European Space Agency (ESA) and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB‐BIRA), assisted by Co‐PI teams from Spain (IAA‐CSIC), Italy (INAF‐IAPS), and the United Kingdom (Open University). This project acknowledges funding from the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401 and 4000121493), the Spanish MICINN through its Plan Nacional, the European funds under grants PGC2018‐101836‐B‐I00 and ESP2017‐87143‐R (MINECO/FEDER), as well as the UK Space Agency through grants ST/V002295/1, ST/V005332/1, ST/R001405/1, and ST/S00145X/1, and the Italian Space Agency through grant 2018‐2‐HH.0. BIRA‐IASB acknowledges funding from the European Union's Horizon 2020 research and innovation program under grant agreement number 101004052. The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía (SEV‐2017‐0709). This work was supported by the Belgian Fonds de la Recherche Scientifique – FNRS under grant numbers 30442502 (ET_HOME). This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.101004052 and T.0171.16 (CRAMIC) and the BELSPO BrainBe SCOOP Project. US investigators were supported by the National Aeronautics and Space Administration. Canadian investigators were supported by the Canada Space Agency. S. Aoki is “Chargé de Recherches” at the F.R.S.‐FNRS. S. Robert thanks BELSPO for the FED‐tWIN funding (Prf‐2019‐077 – RT‐MOLEXO).M. M. J. Crismani is supported by the NASA Postdoctoral Program at the NASA Goddard Space Flight Center, administered by Universities Space Research Association (USRA) under contract with the NASA. This research was supported by the NASA, under grant number GSFC-604796. ExoMars is a space mission of the European Space Agency (ESA) and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB-BIRA), assisted by Co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS), and the United Kingdom (Open University). This project acknowledges funding from the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401 and 4000121493), the Spanish MICINN through its Plan Nacional, the European funds under grants PGC2018-101836-B-I00 and ESP2017-87143-R (MINECO/FEDER), as well as the UK Space Agency through grants ST/V002295/1, ST/V005332/1, ST/R001405/1, and ST/S00145X/1, and the Italian Space Agency through grant 2018-2-HH.0. BIRA-IASB acknowledges funding from the European Union's Horizon 2020 research and innovation program under grant agreement number 101004052. The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the ?Center of Excellence Severo Ochoa? award for the Instituto de Astrof?sica de Andaluc?a (SEV-2017-0709). This work was supported by the Belgian Fonds de la Recherche Scientifique ? FNRS under grant numbers 30442502 (ET_HOME). This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.101004052 and T.0171.16 (CRAMIC) and the BELSPO BrainBe SCOOP Project. US investigators were supported by the National Aeronautics and Space Administration. Canadian investigators were supported by the Canada Space Agency. S. Aoki is ?Charg? de Recherches? at the F.R.S.-FNRS. S. Robert thanks BELSPO for the FED-tWIN funding (Prf-2019-077 ? RT-MOLEXO).
Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, G. L., Liuzzi, G., Thomas, I. R., et al. (2019). Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. Journal of Geophysical Research: Planets, 124(12), 3482–3497. https://doi.org/10.1029/2019JE006109
Barth, C. A., Hord, C. W., Stewart, A. I., Lane, A. L., Dick, M. L., & Anderson, G. P. (1973). Mariner 9 ultraviolet spectrometer experiment: Seasonal variation of ozone on Mars. Science, 179(4075), 795–796. https://doi.org/10.1126/science.179.4075.795
Bertaux, J.-L., Korablev, O., Perrier, S., Quémerais, E., Montmessin, F., Leblanc, F., et al. (2006). SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. Journal of Geophysical Research, 111(E10). https://doi.org/10.1029/2006JE002690
Bibring, J.-P., Langevin, Y., Mustard, J. F., Poulet, F., Arvidson, R., Gendrin, A., et al. (2006). Global mineralogical and aqueous Mars history derived from OMEGA/mars express data. Science, 312(5772), 400–404. https://doi.org/10.1126/science.1122659
Böttger, H. M., Lewis, S. R., Read, P. L., & Forget, F. (2005). The effects of the Martian regolith on GCM water cycle simulations. Icarus, 177(1), 174–189. https://doi.org/10.1016/j.icarus.2005.02.024
Boynton, W. V. (2002). Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science, 297(5578), 81–85. https://doi.org/10.1126/science.1073722
Chaffin, M. S., Deighan, J., Schneider, N. M., & Stewart, A. I. F. (2017). Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nature Geoscience, 10(3), 174–178. https://doi.org/10.1038/ngeo2887
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., Ruff, S. W., Kieffer, H. H., Titus, T. N., et al. (2001). Mars global surveyor thermal emission spectrometer experiment: Investigation description and surface science results. Journal of Geophysical Research, 106, 23823–23871. https://doi.org/10.1029/2000JE001370
Clancy, R. T., Montmessin, F., Benson, J., Daerden, F., Colaprete, A., & Wolff, M. J. (2017). Mars clouds. In F. Forget, M. D. Smith, R. T. Clancy, R. W. Zurek, & R. M. Haberle (Eds.), The atmosphere and climate of Mars (pp. 76–105). Cambridge University Press. https://doi.org/10.1017/9781139060172.005
Connour, K., Schneider, N. M., Milby, Z., Forget, F., Alhosani, M., Spiga, A., et al. (2020). Mars's twilight cloud band: A new cloud feature seen during the Mars Year 34 global dust storm. Geophysical Research Letters, 47(1), e2019GL084997. https://doi.org/10.1029/2019GL084997
Fedorova, A. A., Montmessin, F., Korablev, O., Luginin, M., Trokhimovskiy, A., Belyaev, D. A., et al. (2020). Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, 367(6475), 297–300. https://doi.org/10.1126/science.aay9522
Fedorova, A. A., Rodin, A. V., & Baklanova, I. V. (2004). MAWD observations revisited: Seasonal behavior of water vapor in the Martian atmosphere. Icarus, 171(1), 54–67. https://doi.org/10.1016/j.icarus.2004.04.017
Fedorova, A. A., Trokhimovsky, S., Korablev, O., & Montmessin, F. (2010). Viking observation of water vapor on Mars: Revision from up-to-date spectroscopy and atmospheric models. Icarus, 208(1), 156–164. https://doi.org/10.1016/j.icarus.2010.01.018
Formisano, V., Angrilli, F., Arnold, G., Atreya, S., Bianchini, G., Biondi, D., et al. (2005). The planetary Fourier spectrometer (PFS) onboard the European Mars Express mission. Planetary and Space Science, 53(10), 963–974. https://doi.org/10.1016/j.pss.2004.12.006
Fouchet, T., Lellouch, E., Ignatiev, N. I., Forget, F., Titov, D. V., Tschimmel, M., et al. (2007). Martian water vapor: Mars Express PFS/LW observations. Icarus, 190(1), 32–49. https://doi.org/10.1016/j.icarus.2007.03.003
Griffiths, P. R., & Haseth, J. A. D. (2007). Fourier transform infrared spectrometry. John Wiley & Sons.
Guzewich, S. D., Lemmon, M., Smith, C. L., Martínez, G., de Vicente-Retortillo, Á, Newman, C. E., et al. (2019). Mars science laboratory observations of the 2018/Mars Year 34 global dust storm. Geophysical Research Letters, 46(1), 71–79. https://doi.org/10.1029/2018GL080839
Hase, F., Wallace, L., McLeod, S. D., Harrison, J. J., Bernath, P. F. (2010). The ACE-FTS atlas of the infrared solar spectrum. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(4), 521–528. https://doi.org/10.1016/j.jqsrt.2009.10.020
Heavens, N. G., Kleinböhl, A., Chaffin, M. S., Halekas, J. S., Kass, D. M., Hayne, P. O., et al. (2018). Hydrogen escape from Mars enhanced by deep convection in dust storms. Nature Astronomy, 2(2), 126–132. https://doi.org/10.1038/s41550-017-0353-4
Jakosky, B. M., & Farmer, C. B. (1982). The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking Atmospheric Water Detector Experiment. Journal of Geophysical Research: Solid Earth, 87(B4), 2999–3019. https://doi.org/10.1029/JB087iB04p02999
Kahre, M. A., Murphy, J. R., Newman, C. E., Wilson, R. J., Cantor, B. A., Lemmon, M. T., & Wolff, M. J. (2017). The Mars dust cycle. In F. Forget, M. D. Smith, R. T. Clancy, R. W. Zurek, & R. M. Haberle (Eds.), The atmosphere and climate of Mars (pp. 295–337). Cambridge University Press. https://doi.org/10.1017/9781139060172.010
Kass, D. M., Schofield, J. T., Kleinböhl, A., McCleese, D. J., Heavens, N. G., Shirley, J. H., & Steele, L. J. (2019). Mars Climate Sounder observation of Mars’ 2018 global dust storm. Geophysical Research Letters, 47(23), e2019GL083931. https://doi.org/10.1029/2019GL083931
Kieffer, H. H., Chase, S. C., Martin, T. Z., Miner, E. D., & Palluconi, F. D. (1976). Martian north pole summer temperatures: Dirty water ice. Science, 194(4271), 1341–1344. https://doi.org/10.1126/science.194.4271.1341
Kleinböhl, A., Spiga, A., Kass, D. M., Shirley, J. H., Millour, E., Montabone, L., & Forget, F. (2020). Diurnal variations of dust during the 2018 global dust storm observed by the Mars Climate Sounder. Journal of Geophysical Research: Planets, 125(1), e2019JE006115. https://doi.org/10.1029/2019JE006115
Langevin, Y., Bibring, J.-P., Montmessin, F., Forget, F., Vincendon, M., Douté, S., et al. (2007). Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near-infrared imaging spectrometer on board Mars Express. Journal of Geophysical Research, 112(E8). https://doi.org/10.1029/2006JE002841
Lewis, S. R. (2003). Modelling the Martian atmosphere. Astronomy and Geophysics, 44(4), 46–414. https://doi.org/10.1046/j.1468-4004.2003.44406.x
Liuzzi, G., Masiello, G., Serio, C., Venafra, S., & Camy-Peyret, C. (2016). Physical inversion of the full IASI spectra: Assessment of atmospheric parameters retrievals, consistency of spectroscopy and forward modelling. Journal of Quantitative Spectroscopy and Radiative Transfer, 182, 128–157. https://doi.org/10.1016/j.jqsrt.2016.05.022
Liuzzi, G., Villanueva, G. L., Crismani, M. M. J., Smith, M. D., Mumma, M. J., Daerden, F., et al. (2020). Strong variability of Martian water ice clouds during dust storms revealed from ExoMars Trace Gas Orbiter/NOMAD. Journal of Geophysical Research: Planets, 125(4), e2019JE006250. https://doi.org/10.1029/2019JE006250
Liuzzi, G., Villanueva, G. L., Mumma, M. J., Smith, M. D., Daerden, F., Ristic, B., et al. (2019). Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus, 321, 671–690. https://doi.org/10.1016/j.icarus.2018.09.021
Malin, M. C., & B. A. Cantor,. (2019). MRO MARCI Weather Report for the week of 26 August 2019–27 August 2019 (Malin Space Science Systems Captioned Image Release, MSSS-593). Retrieved from http://www.msss.com/msss_images/2019/09/04/
Maltagliati, L., Montmessin, F., Fedorova, A., Korablev, O., Forget, F., Bertaux, J.-L. (2011). Evidence of water vapor in excess of saturation in the atmosphere of Mars Science 333(6051), 1868–1871. https://doi.org/10.1126/science.1207957
Maltagliati, L., Titov, D. V., Encrenaz, T., Melchiorri, R., Forget, F., Keller, H. U., & Bibring, J.-P. (2011). Annual survey of water vapor behavior from the OMEGA mapping spectrometer onboard Mars Express. Icarus, 213(2), 480–495. https://doi.org/10.1016/j.icarus.2011.03.030
Millour, E., Forget, F., Spiga, A., & Navarro, T. (2015). The Mars Climate Database (MCD version 5.2). (Vol. 10). European Planetary Science Congress.
Montabone, L., Forget, F., Millour, E., Wilson, R. J., Lewis, S. R., Cantor, B., et al. (2015). Eight-year climatology of dust optical depth on Mars. Icarus, 251, 65–95. https://doi.org/10.1016/j.icarus.2014.12.034
Montmessin, F., Smith, M., Langevin, Y., Mellon, M., & Fedorova, A. (2017). The water cycle. In The atmosphere and climate of Mars. Cambridge University Press.
Murchie, S., Arvidson, R., Bedini, P., Beisser, K., Bibring, J.-P., Bishop, J., et al. (2007). Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of Geophysical Research: Planets, 112(E5). https://doi.org/10.1029/2006JE002682
Neary, L., & Daerden, F. (2018). The GEM-Mars general circulation model for Mars: Description and evaluation. Icarus, 300, 458–476. https://doi.org/10.1016/j.icarus.2017.09.028
Neary, L., Daerden, F., Aoki, S., Whiteway, J., Clancy, R. T., Smith, M., et al. (2019). Explanation for the increase in high altitude water on Mars observed by NOMAD during the 2018 global dust storm. Geophysical Research Letters, 47(7), e2019GL084354. https://doi.org/10.1029/2019GL084354
Neefs, E., Vandaele, A. C., Drummond, R., Thomas, I. R., Berkenbosch, S., Clairquin, R., et al. (2015). NOMAD spectrometer on the ExoMars Trace Gas Orbiter mission: Part 1—Design, manufacturing and testing of the infrared channels. Applied Optics, 54(28), 8494–8520. https://doi.org/10.1364/AO.54.008494
Pankine, A. A., & Tamppari, L. K. (2019). MGS TES observations of the water vapor in the Martian southern polar atmosphere during spring and summer. Icarus, 331, 26–48. https://doi.org/10.1016/j.icarus.2019.05.010
Pankine, A. A., Tamppari, L. K., & Smith, M. D. (2010). MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer. Icarus, 210(1), 58–71. https://doi.org/10.1016/j.icarus.2010.06.043
Patel, M. R., Antoine, P., Mason, J., Leese, M., Hathi, B., Stevens, A. H., et al. (2017). NOMAD spectrometer on the ExoMars Trace Gas Orbiter mission: Part 2—Design, manufacturing, and testing of the ultraviolet and visible channel. Applied Optics, 56(10), 2771–2782. https://doi.org/10.1364/AO.56.002771
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding: Theory and practice. World Scientific.
Sánchez-Lavega, A., Chen-Chen, H., Ordoñez-Etxeberria, I., Hueso, R., del Río-Gaztelurrutia, T., Garro, A., et al. (2018). Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express. Icarus, 299, 194–205. https://doi.org/10.1016/j.icarus.2017.07.026
Sánchez-Lavega, A., del Río-Gaztelurrutia, T., Hernández-Bernal, J., & Delcroix, M. (2019). The onset and growth of the 2018 Martian global dust storm. Geophysical Research Letters, 46(11), 6101–6108. https://doi.org/10.1029/2019GL083207
Savijärvi, H., Martinez, G., Harri, A.-M., & Paton, M. (2020). Curiosity observations and column model integrations for a Martian global dust event. Icarus, 337, 113515. https://doi.org/10.1016/j.icarus.2019.113515
Smith, M. D. (2002). The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer. Journal of Geophysical Research, 107(E11), 25-1–25-19. https://doi.org/10.1029/2001JE001522
Smith, M. D. (2004). Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus, 167(1), 148–165. https://doi.org/10.1016/j.icarus.2003.09.010
Smith, M. D. (2019). THEMIS observations of the 2018 Mars global dust storm. Journal of Geophysical Research: Planets, 124(11), 2929–2944. https://doi.org/10.1029/2019JE006107
Smith, M. D., Daerden, F., Neary, L., & Khayat, A. (2018). The climatology of carbon monoxide and water vapor on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model. Icarus, 301, 117–131. https://doi.org/10.1016/j.icarus.2017.09.027
Smith, M. D., Daerden, F., Neary, L., Khayat, A. S. J., Holmes, J. A., Patel, M. R., et al. (2021). The climatology of carbon monoxide on Mars as observed by NOMAD nadir-geometry observations. Icarus 362, 114404. https://doi.org/10.1016/j.icarus.2021.114404
Smith, M. D., Wolff, M. J., Clancy, R. T., Kleinböhl, A., & Murchie, S. L. (2013). Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. Journal of Geophysical Research: Planets, 118(2), 321–334. https://doi.org/10.1002/jgre.20047
Smith, M. D., Wolff, M. J., Clancy, R. T., & Murchie, S. L. (2009). Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide. Journal of Geophysical Research, 114. https://doi.org/10.1029/2008JE003288
Spinrad, H., Münch, G., & Kaplan, L. D. (1963). Letter to the editor: The detection of water vapor on Mars. The Astrophysical Journal, 137, 1319. https://doi.org/10.1086/147613
Stevens, M. H., Siskind, D. E., Evans, J. S., Jain, S. K., Schneider, N. M., Deighan, J., et al. (2017). Martian mesospheric cloud observations by IUVS on MAVEN: Thermal tides coupled to the upper atmosphere. Geophysical Research Letters, 44(10), 4709–4715. https://doi.org/10.1002/2017GL072717
Thomas, I. R., Vandaele, A. C., Robert, S., Neefs, E., Drummond, R., Daerden, F., et al. (2016). Optical and radiometric models of the NOMAD instrument part II: The infrared channels—SO and LNO. Optics Express, 24(4), 3790–3805. https://doi.org/10.1364/OE.24.003790
Trokhimovskiy, A., Fedorova, A., Korablev, O., Montmessin, F., Bertaux, J.-L., Rodin, A., & Smith, M. D. (2015). Mars’ water vapor mapping by the SPICAM IR spectrometer: Five Martian Years of observations. Icarus, 251, 50–64. https://doi.org/10.1016/j.icarus.2014.10.007
Tschimmel, M., Ignatiev, N. I., Titov, D. V., Lellouch, E., Fouchet, T., Giuranna, M., & Formisano, V. (2008). Investigation of water vapor on Mars with PFS/SW of Mars Express. Icarus, 195(2), 557–575. https://doi.org/10.1016/j.icarus.2008.01.018
Vandaele, A. C., Korablev, O., Daerden, F., Aoki, S., Thomas, I. R., Altieri, F., et al. (2019). Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 568(7753), 521–525. https://doi.org/10.1038/s41586-019-1097-3
Vandaele, A. C., Lopez-Moreno, J.-J., Patel, M. R., Bellucci, G., Daerden, F., Ristic, B., et al. (2018). NOMAD, an integrated suite of three spectrometers for the ExoMars Trace Gas Mission: Technical description, science objectives and expected performance. Space Science Reviews, 214(5), 80. https://doi.org/10.1007/s11214-018-0517-2
Vandaele, A. C., Mahieux, A., Robert, S., Berkenbosch, S., Clairquin, R., Drummond, R., et al. (2013). Improved calibration of SOIR/Venus Express spectra. Optics Express, 21(18), 21148–21161. https://doi.org/10.1364/OE.21.021148
Villanueva, G. L., Smith, M. D., Protopapa, S., Faggi, S., & Mandell, A. M. (2018). Planetary Spectrum Generator: An accurate online radiative transfer suite for atmospheres, comets, small bodies and exoplanets. Journal of Quantitative Spectroscopy and Radiative Transfer, 217, 86–104. https://doi.org/10.1016/j.jqsrt.2018.05.023
Viúdez-Moreiras, D., Newman, C. E., dela Torre, M., Martínez, G., Guzewich, S., Lemmon, M., et al. (2019). Effects of the MY34/2018 global dust storm as measured by MSL REMS in gale crater. Journal of Geophysical Research: Planets, 124(7), 1899–1912. https://doi.org/10.1029/2019JE005985
Zent, A. P., Haberle, R. M., Houben, H. C., & Jakosky, B. M. (1993). A coupled subsurface-boundary layer model of water on Mars. Journal of Geophysical Research, 98(E2), 3319–3337. https://doi.org/10.1029/92JE02805