aerosols; atmosphere; CO2 ice clouds; Mars; NOMAD; temperature; CO2 ice cloud; ExoMars; Ice clouds; Midlatitudes; Thermal characterization; Trace gas; Water ice; Water particles; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] We present observations of terminator CO2 ice clouds events in three groups: Equatorial dawn, Equatorial dusk (both between 20°S and 20°N) and Southern midlatitudes at dawn (45°S and 55°S east of Hellas Basin) with ESA ExoMars Trace Gas Orbiter's Nadir and Occultation for MArs Discovery instrument. CO2 ice abundance is retrieved simultaneously with water ice, dust, and particle sizes, and rotational temperature and CO2 column profiles in 16 of 26 cases. Small particles (<0.5 μm) prevail at dusk, while water ice likely provides most source nuclei at dawn. Clouds east of Hellas are found to be dominantly nucleated on surface-lifted dust. CO2 ice is sometimes detected in unsaturated air together with dust nuclei at dawn, suggesting ongoing sublimation. Depending on latitude and local time, the interplay between particle precipitation and the lifetime of temperature minima (i.e., cold pockets) determines CO2 ice properties.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Liuzzi, Giuliano ; NASA Goddard Space Flight Center, Greenbelt, United States ; Department of Physics, American University, Washington, United States
Villanueva, Geronimo L. ; NASA Goddard Space Flight Center, Greenbelt, United States
Trompet, Loïc ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Crismani, Matteo M. J. ; California State University San Bernardino, San Bernardino, United States
Piccialli, Arianna ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Aoki, Shohei ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium ; Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Japan
Lopez-Valverde, Miguel Angel; Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia, Granada, Spain
Stolzenbach, Aurélien ; Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia, Granada, Spain
Daerden, Frank ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Neary, Lori ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Smith, Michael D. ; NASA Goddard Space Flight Center, Greenbelt, United States
Patel, Manish R. ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Lewis, Stephen R. ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Clancy, R. Todd ; Space Science Institute, Bald Head Island, United States
Thomas, Ian R. ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Ristic, Bojan ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Bellucci, Giancarlo ; Istituto di Astrofisica e Planetologia Spaziali, IAPS-INAF, Rome, Italy
Lopez-Moreno, Jose-Juan ; Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia, Granada, Spain
Vandaele, Ann Carine ; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
BELSPO - Belgian Science Policy Office MICINN - Ministerio de Ciencia e Innovacion UK Space Agency ASI - Agenzia Spaziale Italiana
Funding text :
ExoMars is a space mission of the European Space Agency (ESA) and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB‐BIRA), assisted by Co‐PI teams from Spain (IAA‐CSIC), Italy (INAF‐IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493), by the Spanish MICINN through its Plan Nacional and by European funds under grants PGC2018‐101836‐B‐I00 and ESP2017‐87143‐R (MINECO/FEDER), as well as by UK Space Agency through grants ST/V002295/1, ST/V005332/1, ST/R001405/1 and ST/S00145X/1 and Italian Space Agency through grant 2018‐2‐HH.0. The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía (SEV‐2017‐0709). This work was supported by NASA's Mars Program Office under WBS 604796, “Participation in the TGO/NOMAD Investigation of Trace Gases on Mars” and by NASA's SEEC initiative under Grant Number NNX17AH81A, “Remote sensing of Planetary Atmospheres in the Solar System and Beyond”. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 101004052. U.S. investigators were supported by the National Aeronautics and Space Administration.ExoMars is a space mission of the European Space Agency (ESA) and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB-BIRA), assisted by Co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493), by the Spanish MICINN through its Plan Nacional and by European funds under grants PGC2018-101836-B-I00 and ESP2017-87143-R (MINECO/FEDER), as well as by UK Space Agency through grants ST/V002295/1, ST/V005332/1, ST/R001405/1 and ST/S00145X/1 and Italian Space Agency through grant 2018-2-HH.0. The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the ?Center of Excellence Severo Ochoa? award for the Instituto de Astrof?sica de Andaluc?a (SEV-2017-0709). This work was supported by NASA's Mars Program Office under WBS 604796, ?Participation in the TGO/NOMAD Investigation of Trace Gases on Mars? and by NASA's SEEC initiative under Grant Number NNX17AH81A, ?Remote sensing of Planetary Atmospheres in the Solar System and Beyond?. This project has received funding from the European Union?s Horizon 2020 research and innovation programme under grant agreement No. 101004052. U.S. investigators were supported by the National Aeronautics and Space Administration.
Aoki, S., Sato, Y., Giuranna, M., Wolkenberg, P., Sato, T. M., Nakagawa, H., & Kasaba, Y. (2018). Mesospheric CO2 ice clouds on Mars observed by Planetary Fourier Spectrometer onboard Mars Express. Icarus, 302, 175–190. https://doi.org/10.1016/j.icarus.2017.10.047
Clancy, R. T., Grossman, A. W., Wolff, M. J., James, P. B., Rudy, D. J., Billawala, Y. N., et al. (1996). Water vapor saturation at low altitudes around Mars Aphelion: A key to Mars climate? Icarus, 122(1), 36–62. https://doi.org/10.1006/icar.1996.0108
Clancy, R. T., & Sandor, B. J. (1998). CO2 ice clouds in the upper atmosphere of Mars. Geophysical Research Letters, 25(4), 489–492. https://doi.org/10.1029/98GL00114
Clancy, R. T., Wolff, M., Whitney, B., & Cantor, B. (2004). The Distribution of High Altitude (70KM) Ice Clouds in the Mars Atmospere from MGS TES and MOC LIMB Observations. Presented at the Bulletin of the American Astronomical Society (Vol. 36, 26.06).
Clancy, R. T., Wolff, M. J., Smith, M. D., Kleinböhl, A., Cantor, B. A., Murchie, S. L., et al. (2019). The distribution, composition, and particle properties of Mars mesospheric aerosols: An analysis of CRISM visible/near-IR limb spectra with context from near-coincident MCS and MARCI observations. Icarus, 328, 246–273. https://doi.org/10.1016/j.icarus.2019.03.025
Clancy, R. T., Wolff, M. J., Whitney, B. A., Cantor, B. A., & Smith, M. D. (2007). Mars equatorial mesospheric clouds: Global occurrence and physical properties from Mars Global Surveyor Thermal Emission Spectrometer and Mars Orbiter Camera limb observations. Journal of Geophysical Research, 112(E4), E04004. https://doi.org/10.1029/2006JE002805
Colaprete, A., & Toon, O. B. (2003). Carbon dioxide clouds in an early dense Martian atmosphere. Journal of Geophysical Research, 108(E4), 5025. https://doi.org/10.1029/2002JE001967
Creasey, J. E., Forbes, J. M., & Keating, G. M. (2006). Density variability at scales typical of gravity waves observed in Mars’ thermosphere by the MGS accelerometer. Geophysical Research Letters, 33(22), L22814. https://doi.org/10.1029/2006GL027583
Crismani, M. M. J., Schneider, N. M., Plane, J. M. C., Evans, J. S., Jain, S. K., Chaffin, M. S., et al. (2017). Detection of a persistent meteoric metal layer in the Martian atmosphere. Nature Geoscience, 10(6), 401–404. https://doi.org/10.1038/ngeo2958
Glandorf, D. L., Colaprete, A., Tolbert, M. A., & Toon, O. B. (2002). CO2 snow on Mars and early Earth: Experimental constraints. Icarus, 160(1), 66–72. https://doi.org/10.1006/icar.2002.6953
González-Galindo, F., Määttänen, A., Forget, F., & Spiga, A. (2011). The martian mesosphere as revealed by CO2 cloud observations and general circulation modeling. Icarus, 216(1), 10–22. https://doi.org/10.1016/j.icarus.2011.08.006
Hartwick, V. L., Toon, O. B., & Heavens, N. G. (2019). High-altitude water ice cloud formation on Mars controlled by interplanetary dust particles. Nature Geoscience, 12(7), 516–521. https://doi.org/10.1038/s41561-019-0379-6
Jiang, F. Y., Yelle, R. V., Jain, S. K., Cui, J., Montmessin, F., Schneider, N. M., et al. (2019). Detection of mesospheric CO2 ice clouds on Mars in southern summer. Geophysical Research Letters, 46(14), 7962–7971. https://doi.org/10.1029/2019GL082029
Kasting, J. F. (1991). CO2 condensation and the climate of early Mars. Icarus, 94(1), 1–13. https://doi.org/10.1016/0019-1035(91)90137-I
Listowski, C., Määttänen, A., Montmessin, F., Spiga, A., & Lefèvre, F. (2014). Modeling the microphysics of CO2 ice clouds within wave-induced cold pockets in the martian mesosphere. Icarus, 237, 239–261. https://doi.org/10.1016/j.icarus.2014.04.022
Liuzzi, G. (2021). Data in support of the publication "First Detection and Thermal Characterization of Terminator CO2 Ice Clouds with ExoMars/NOMAD” on Geophysical Research Letters. https://doi.org/10.5281/zenodo.5572859
Liuzzi, G., Masiello, G., Serio, C., Venafra, S., & Camy-Peyret, C. (2016). Physical inversion of the full IASI spectra: Assessment of atmospheric parameters retrievals, consistency of spectroscopy and forward modelling. Journal of Quantitative Spectroscopy and Radiative Transfer, 182, 128–157. https://doi.org/10.1016/j.jqsrt.2016.05.022
Liuzzi, G., Villanueva, G. L., Crismani, M. M. J., Smith, M. D., Mumma, M. J., Daerden, F., et al. (2020). Strong variability of Martian water ice clouds during dust storms revealed from ExoMars trace gas orbiter/NOMAD. Journal of Geophysical Research, 125(4), e2019JE006250. https://doi.org/10.1029/2019JE006250
Liuzzi, G., Villanueva, G. L., Mumma, M. J., Smith, M. D., Daerden, F., Ristic, B., et al. (2019). Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus, 321, 671–690. https://doi.org/10.1016/j.icarus.2018.09.021
Määttänen, A., Montmessin, F., Gondet, B., Scholten, F., Hoffmann, H., González-Galindo, F., et al. (2010). Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus, 209(2), 452–469. https://doi.org/10.1016/j.icarus.2010.05.017
Määttänen, A., Vehkamäki, H., Lauri, A., Merikallio, S., Kauhanen, J., Savijärvi, H., & Kulmala, M. (2005). Nucleation studies in the Martian atmosphere. Journal of Geophysical Research, 110(E2), E02002. https://doi.org/10.1029/2004JE002308
Magalhães, J. A., Schofield, J. T., & Seiff, A. (1999). Results of the Mars pathfinder atmospheric structure investigation. Journal of Geophysical Research, 104(E4), 8943–8955. https://doi.org/10.1029/1998JE900041
Mahieux, A., Vandaele, A. C., Robert, S., Wilquet, V., Drummond, R., López Valverde, M. A., et al. (2015). Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express. Planetary and Space Science, 113–114, 347–358. https://doi.org/10.1016/j.pss.2014.12.020
McCleese, D. J., Heavens, N. G., Schofield, J. T., Abdou, W. A., Bandfield, J. L., Calcutt, S. B., et al. (2010). Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars climate sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols. Journal of Geophysical Research, 115(E12), E12016. https://doi.org/10.1029/2010JE003677
Millour, E., Forget, F., Spiga, A., Navarro, T., Madeleine, J.-B., Montabone, L., et al. (2015). The Mars climate database (MCD version 5.2). European Planetary Science Congress, 10, EPSC2015–438.
Montmessin, F., Bertaux, J.-L., Quémerais, E., Korablev, O., Rannou, P., Forget, F., et al. (2006). Subvisible CO2 ice clouds detected in the mesosphere of Mars. Icarus, 183(2), 403–410. https://doi.org/10.1016/j.icarus.2006.03.015
Montmessin, F., Gondet, B., Bibring, J.-P., Langevin, Y., Drossart, P., Forget, F., & Fouchet, T. (2007). Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars. Journal of Geophysical Research, 112(E11), E11S90. https://doi.org/10.1029/2007JE002944
NASA/JPL/MSSS. (2001). “Mid Winter Dust Storms Near Hellas Planitia”. Retrieved from https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA03222
Neary, L., & Daerden, F. (2018). The GEM-Mars general circulation model for Mars: Description and evaluation. Icarus, 300, 458–476. https://doi.org/10.1016/j.icarus.2017.09.028
Neefs, E., Vandaele, A. C., Drummond, R., Thomas, I. R., Berkenbosch, S., Clairquin, R., et al. (2015). NOMAD spectrometer on the ExoMars trace gas orbiter mission: Part 1—Design, manufacturing and testing of the infrared channels. Applied Optics, 54(28), 8494. https://doi.org/10.1364/AO.54.008494
Noguchi, K., Ikeda, S., Kuroda, T., Tellmann, S., & Pätzold, M. (2014). Estimation of changes in the composition of the Martian atmosphere caused by CO2 condensation from GRS Ar measurements and its application to the rederivation of MGS radio occultation measurements. Journal of Geophysical Research: Planets, 119(12), 2510–2521. https://doi.org/10.1002/2014JE004629
Piccialli, A., López-Valverde, M. A., Määttänen, A., González-Galindo, F., Audouard, J., Altieri, F., et al. (2016). CO2 non-LTE limb emissions in Mars’ atmosphere as observed by OMEGA/Mars Express. Journal of Geophysical Research: Planets, 121(6), 1066–1086. https://doi.org/10.1002/2015JE004981
Plane, J. M. C., Carrillo-Sanchez, J. D., Mangan, T. P., Crismani, M. M. J., Schneider, N. M., & Määttänen, A. (2018). Meteoric metal chemistry in the Martian atmosphere. Journal of Geophysical Research: Planets, 123(3), 695–707. https://doi.org/10.1002/2017JE005510
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding | series on atmospheric, oceanic and planetary physics. Retrievedfrom https://www.worldscientific.com/worldscibooks/10.1142/3171
Sánchez-Lavega, A., Muñoz, A. G., García-Melendo, E., Pérez-Hoyos, S., Gómez-Forrellad, J. M., Pellier, C., et al. (2015). An extremely high-altitude plume seen at Mars’ morning terminator. Nature, 518(7540), 525–528. https://doi.org/10.1038/nature14162
Sánchez-Lavega, A., Pérez-Hoyos, S., & Hueso, R. (2004). Clouds in planetary atmospheres: A useful application of the Clausius–Clapeyron equation. American Journal of Physics, 72(6), 767–774. https://doi.org/10.1119/1.1645279
Schofield, J. T., Barnes, J. R., Crisp, D., Haberle, R. M., Larsen, S., Magalhães, J. A., et al. (1997). The Mars pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. Science, 278(5344), 1752–1758. https://doi.org/10.1126/science.278.5344.1752
Sefton-Nash, E., Teanby, N. A., Montabone, L., Irwin, P. G. J., Hurley, J., & Calcutt, S. B. (2013). Climatology and first-order composition estimates of mesospheric clouds from Mars climate sounder limb spectra. Icarus, 222(1), 342–356. https://doi.org/10.1016/j.icarus.2012.11.012
Smith, M. D. (2004). Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus, 167(1), 148–165. https://doi.org/10.1016/j.icarus.2003.09.010
Smith, M. D., Wolff, M. J., Clancy, R. T., Kleinböhl, A., & Murchie, S. L. (2013). Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. Journal of Geophysical Research: Planets, 118(2), 321–334. https://doi.org/10.1002/jgre.20047
Spiga, A., Faure, J., Madeleine, J.-B., Määttänen, A., & Forget, F. (2013). Rocket dust storms and detached dust layers in the Martian atmosphere. Journal of Geophysical Research: Planets, 118(4), 746–767. https://doi.org/10.1002/jgre.20046
Spiga, A., González-Galindo, F., López-Valverde, M.-Á., & Forget, F. (2012). Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere. Geophysical Research Letters, 39(2), L02201. https://doi.org/10.1029/2011GL050343
Stevens, M. H., Siskind, D. E., Evans, J. S., Jain, S. K., Schneider, N. M., Deighan, J., et al. (2017). Martian mesospheric cloud observations by IUVS on MAVEN: Thermal tides coupled to the upper atmosphere. Geophysical Research Letters, 44(10), 4709–4715. https://doi.org/10.1002/2017GL072717
Thomas, I. R., Vandaele, A. C., Robert, S., Neefs, E., Drummond, R., Daerden, F., et al. (2016). Optical and radiometric models of the NOMAD instrument part II: The infrared channels - SO and LNO. Optics Express, 24(4), 3790. https://doi.org/10.1364/OE.24.003790
Vandaele, A. C., Lopez-Moreno, J.-J., Patel, M. R., Bellucci, G., Daerden, F., Ristic, B., et al. (2018). NOMAD, an integrated suite of three spectrometers for the ExoMars trace gas mission: Technical description, science objectives and expected performance. Space Science Reviews, 214(5), 80. https://doi.org/10.1007/s11214-018-0517-2
Villanueva, G. L., Smith, M. D., Protopapa, S., Faggi, S., & Mandell, A. M. (2018). Planetary spectrum generator: An accurate online radiative transfer suite for atmospheres, comets, small bodies and exoplanets. Journal of Quantitative Spectroscopy and Radiative Transfer, 217, 86–104. https://doi.org/10.1016/j.jqsrt.2018.05.023
Vincendon, M., Pilorget, C., Gondet, B., Murchie, S., & Bibring, J.-P. (2011). New near-IR observations of mesospheric CO2 and H2O clouds on Mars. Journal of Geophysical Research, 116(E11), E00J02. https://doi.org/10.1029/2011JE003827
Warren, S. G. (1986). Optical constants of carbon dioxide ice. Applied Optics, 25(16), 2650–2674. https://doi.org/10.1364/AO.25.002650
Wolff, M. J., Clancy, R. T., Kahre, M. A., Haberle, R. M., Forget, F., Cantor, B. A., & Malin, M. C. (2019). Mapping water ice clouds on Mars with MRO/MARCI. Icarus, 332, 24–49. https://doi.org/10.1016/j.icarus.2019.05.041
Wolkenberg, P., & Giuranna, M. (2021). Daily dust variation from the PFS MEx observations. Icarus, 353, 113823. https://doi.org/10.1016/j.icarus.2020.113823
Wood, B. E., & Roux, J. A. (1982). Infrared optical properties of thin H2O, NH3, and CO2 cryofilms. JOSA, 72(6), 720–728. https://doi.org/10.1364/JOSA.72.000720
Yiğit, E., Medvedev, A. S., & Hartogh, P. (2015). Gravity waves and high-altitude CO2 ice cloud formation in the Martian atmosphere. Geophysical Research Letters, 42(11), 4294–4300. https://doi.org/10.1002/2015GL064275
Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, G. L., Liuzzi, G., Thomas, I. R., et al. (2019). Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. Journal of Geophysical Research: Planets, 124(12), 3482–3497. https://doi.org/10.1029/2019JE006109
Carissimo, A., De Feis, I., & Serio, C. (2005). The physical retrieval methodology for IASI: The δ-IASI code. Environmental Modelling & Software, 20(9), 1111–1126. https://doi.org/10.1016/j.envsoft.2004.07.003
Isokoski, K., Poteet, C. A., & Linnartz, H. (2013). Highly resolved infrared spectra of pure CO2 ice (15–75 K). Astronomy & Astrophysics, 555, A85. https://doi.org/10.1051/0004-6361/201321517
Masiello, G., Serio, C., Carissimo, A., Grieco, G., & Matricardi, M. (2009). Application of φ-IASI to IASI: Retrieval products evaluation and radiative transfer consistency. Atmospheric Chemistry and Physics, 9(22), 8771–8783.
Nevejans, D., Neefs, E., Van Ransbeeck, E., Berkenbosch, S., Clairquin, R., De Vos, L., et al. (2006). Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 μm. Applied Optics, 45(21), 5191–5206.
Quémerais, E., Bertaux, J.-L., Korablev, O., Dimarellis, E., Cot, C., Sandel, B. R., & Fussen, D. (2006). Stellar occultations observed by SPICAM on Mars Express. Journal of Geophysical Research, 111(E9), E09S04. https://doi.org/10.1029/2005JE002604
Villanueva, G. L., Liuzzi, G., Crismani, M. M. J., Aoki, S., Vandaele, A. C., Daerden, F., et al. (2021). Water heavily fractionated as it ascends on Mars as revealed by ExoMars/NOMAD. Science Advances, 7(7), eabc8843. https://doi.org/10.1126/sciadv.abc8843