[en] Dam construction and streamflow regulation are increasing throughout the world,
with impacts in impounded aquatic ecosystems. Hydropower dams, some of them
causing a phenomenon called “hydropeaking” during their operation, are known for
having a variety of impacts on downstream aquatic biota, particularly fish, and respective
habitat. This can result in significant changes, from the community (e.g., fish
assemblage structure) to the individual level (e.g., physiological and behavioural
adjustments). Researchers and managers involved in the assessment of hydropeaking
impacts must be resourceful and use methods that allow their precise evaluation,
from large to fine-scale habitat and biological responses. In the last decades, technological
advances allowed for the development of techniques and instrumentations
that are increasingly being used in hydropeaking impact and mitigation assessments.
This paper aims to provide a review, to researchers and managers interested in this
field, of some of the most innovative methods and techniques, involving technology,
that are available to study hydropeaking effects on downstream ecosystem, particularly
from a fish perspective. We discuss the fundamentals behind such techniques,
their advantages, and disadvantages, while also providing practical examples of their
application and of the type of results that can be obtained. We finish by discussing
some of the shortcomings of these methods and how related technology can evolve
to solve current limitations.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Alexandre, Carlos M. ; MARE – Marine and Environmental Science Centre, ARNET‐Aquatic Research Network University of Évora Evora Portugal
Quintella, Bernardo R. ; MARE – Marine and Environmental Science Centre, ARNET‐Aquatic Research Network University of Évora Evora Portugal ; Department of Animal Biology Faculty of Sciences of the University of Lisbon Lisbon Portugal
Ovidio, Michaël ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Gestion des ressources aquatiques et aquaculture
Boavida, Isabel ; CERIS, Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico University of Lisbon Lisbon Portugal
Costa, Maria J. ; CERIS, Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico University of Lisbon Lisbon Portugal
Palstra, Arjan P. ; Animal Breeding and Genomics Wageningen University & Research Wageningen The Netherlands
de Lima, Rui L. Pedroso ; MARE – Marine and Environmental Sciences Centre, ARNET‐Aquatic Research Network University of Coimbra Coimbra Portugal ; Indymo: Innovative Dynamic Monitoring Delft The Netherlands
de Lima, Maria Isabel P. ; MARE – Marine and Environmental Sciences Centre, ARNET‐Aquatic Research Network University of Coimbra Coimbra Portugal ; Department of Civil Engineering, Faculty of Sciences and Technology University of Coimbra Coimbra Portugal
de Lima, João L.M.P. ; MARE – Marine and Environmental Sciences Centre, ARNET‐Aquatic Research Network University of Coimbra Coimbra Portugal ; Department of Civil Engineering, Faculty of Sciences and Technology University of Coimbra Coimbra Portugal
Almeida, Pedro R. ; MARE – Marine and Environmental Science Centre, ARNET‐Aquatic Research Network University of Évora Evora Portugal ; Department of Biology, School of Sciences and Technology University of Évora Evora Portugal
Language :
English
Title :
Technologies for the study of hydropeaking impacts on fish populations: Applications, advantages, outcomes, and future developments
Agarwal, P., & Singh, M. K. (2019). A multipurpose drone for water sampling & video surveillance. Paper presented at 2019 second international conference on advanced computational and communication paradigms (ICACCP), 1–5.
Alexandre, C. M., Almeida, P. R., Neves, T., Mateus, C. S., Costa, J. L., & Quintella, B. R. (2016). Effects of flow regulation on the movement patterns and habitat use of a potamodromous cyprinid species. Ecohydrology, 9(2), 326–340. https://doi.org/10.1002/eco.1638
Alexandre, C. M., & Palstra, A. (2017). Effect of short-term regulated temperature variations on the swimming economy of Atlantic salmon smolts. Conservation Physiology., 5. https://doi.org/10.1093/conphys/cox025
Almeida, P. R., Pereira, T. J., Quintella, B. R., Gronningsaeter, A., Costa, M. J., & Costa, J. L. (2013). Testing a 3-axis accelerometer acoustic transmitter (AccelTag) on the Lusitanian toadfish. Journal of Experimental Marine Biology and Ecology, 449, 230–238. https://doi.org/10.1016/j.jembe.2013.09.015
Almeida, P. R., Quintella, B. R., & Dias, N. M. (2002). Movement of radio-tagged anadromous sea lamprey during the spawning migration in the river Mondego (Portugal). In E. B. Thorstad, I. A. Fleming, & T. F. Næsje (Eds.), Aquatic telemetry. Developments in hydrobiology (Vol. 165). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-0771-8_1
Alzu'bi, H., Mansour, I., & Rawashdeh, O. (2018). Loon copter: Implementation of a hybrid unmanned aquatic–aerial quadcopter with active buoyancy control. Journal of Field Robotics, 35(5), 764–778. https://doi.org/10.1002/rob.21777
Arthington, A. H. (2012). Environmental flows: Saving rivers in the third millennium. Los Angeles, CA: University of California Press.
Auer, S., Zeiringer, B., Fuhrer, S., Tonolla, D., & Schmutz, S. (2017). Effects of river bank heterogeneity and time of day on drift and stranding of juvenile European grayling (Thymallus thymallus L.) caused by hydropeaking. Science of the Total Environment, 575, 1515–1521. https://doi.org/10.1016/j.scitotenv.2016.10.029
Baladrón, A., Costa, M. J., Bejarano, M. D., Pinheiro, A. P., & Boavida, I. (2021). Can vegetation provide shelter to cyprinid species under hydropeaking? Science of the Total Environment, 769, 145339. https://doi.org/10.1016/j.scitotenv.2021.145339
Bartoň, D., Brabec, M., Sajdlová, Z., Sousa, A. T., Duras, J., Kortan, D., … Šmejkal, M. (2021). Hydropeaking causes spatial shifts in a reproducing rheophilic fish. Science of the Total Environment, 806(2), 150649. https://doi.org/10.1016/j.scitotenv.2021.150649
Bartoň, D., Bretón, F., Blabolil, P., Souza, A. T., Vejřík, L., Sajdlová, Z., … Šmejkal, M. (2021). Effects of hydropeaking on the attached eggs of a rheophilic cyprinid species. Ecohydrology, 14, e2280. https://doi.org/10.1002/eco.2280
Beauregard, D., Enders, E., & Boisclair, D. (2013). Consequences of circadian fluctuations in water temperature on the standard metabolic rate of Atlantic salmon parr (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 70, 1072–1081. https://doi.org/10.1139/cjfas-2012-0342
Berland, G. T., Nickelsen, T., Heggenes, J., Okland, F., Thorstad, E. B., & Halleraker, J. (2004). Movements of wild Atlantic salmon parr in relation to peaking flows below a hydropower station. River Research and Applications, 20, 957–966. https://doi.org/10.1002/rra.802
Bibuli, M., Bruzzone, G., Caccia, M., Fumagalli, E., Saggini, E., Zereik, E., … Ivaldi, R. (2014). Unmanned surface vehicles for automatic bathymetry mapping and shores' maintenance. Paper presented at Oceans 2014-Taipei, IEEE, 1–7.
Blazka, P. M., Volf, M., & Cepela, M. (1960). A new type of respirometer for the determination of the metabolism of fish in an active state. Physiologia Bohemoslovaca, 9(6), 553–558.
Boavida, I., Ambrósio, F., Costa, M. J., Quaresma, A., Portela, M. M., Pinheiro, A., & Godinho, F. (2020). Habitat use by Pseudochondrostoma duriense and Squalius carolitertii downstream of a small-scale hydropower plant. Water, 12(9), 2522. https://doi.org/10.3390/w12092522
Boavida, I., Costa, M. J., Portela, M. M., Godinho, F., Tuhtan, J., & Pinheiro, A. (2021). Do cyprinid fish use lateral flow-refuges during hydropeaking? River Research and Applications. https://doi.org/10.1002/rra.3863
Boavida, I., Harby, A., Clarke, K. D., & Heggenes, J. (2017). Move or stay: Habitat use and movements by Atlantic salmon parr (Salmo salar) during induced rapid flow variations. Hydrobiologia, 785, 261–275. https://doi.org/10.1007/s10750-016-2931-3
Branco, P., Boavida, I., Santos, J. M., Pinheiro, A. N., & Ferreira, M. T. (2013). Boulders as building blocks: Improving habitat and river connectivity for stream fish. Ecohydrology, 6, 627–634. https://doi.org/10.1002/eco.1290
Brett, J. R. (1964). The respiratory metabolism and swimming performance of young sockeye salmon. Journal of the Fisheries Research Board of Canada, 30, 1779–1809 or 21: 1183-1226. https://doi.org/10.1139/f64-103
Bruno, M. C., Siviglia, A., Carolli, M., & Maiolini, B. (2013). Multiple drift responses of benthic invertebrates to interacting hydropeaking and thermopeaking waves. Ecohydrology, 6, 511–522. https://doi.org/10.1002/eco.1275
Bunn, S. E., & Arthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30, 492–507.
Bunt, C. M., Cooke, S. J., Katopodis, C., & Mckinley, R. S. (1999). Movement and summer habitat of brown trout (Salmo trutta) below a pulsed discharge hydroelectric generating station. Regulated Rivers: Research & Management, 15, 395–403.
Burgerhout, E., Tudorache, C., Brittijn, S. A., Palstra, A. P., Dirks, R. P. H., & van den Thillart, G. E. E. J. M. (2013). Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L. Journal of Experimental Marine Biology and Ecology, 448, 66–71. https://doi.org/10.1016/j.jembe.2013.05.015
Caccia, M., Bibuli, M., Bono, R., Bruzzone, G., Bruzzone, G., & Spirandelli, E. (2007). Unmanned surface vehicle for coastal and protected waters applications: The Charlie project. Marine Technology Society Journal, 41(2), 62–71. https://doi.org/10.4031/002533207787442259
Capocci, R., Dooly, G., Omerdić, E., Coleman, J., Newe, T., & Toal, D. (2017). Inspection-class remotely operated vehicles—A review. Journal of Marine Science and Engineering, 5, 13. https://doi.org/10.3390/jmse5010013
Capra, H., Plichard, L., Bergé, J., Pella, H., Ovidio, M., McNeil, E., & Lamouroux, N. (2017). Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry. Science of the Total Environment, 578, 109–120. https://doi.org/10.1016/j.scitotenv.2016.10.155
Castendyk, D., Voorhis, J., & Kucera, B. (2020). A validated method for pit lake water sampling using aerial drones and sampling devices. Mine Water and the Environment, 39, 440–454. https://doi.org/10.1007/s10230-020-00673-y
Cazenave, A. (2019). Satellite altimetry. In J. K. Cochran, H. J. Bokuniewicz, & P. L. Yager (Eds.), Encyclopedia of ocean sciences (Third ed., pp. 397–401). Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-0-12-409548-9.11624-0
Chabot, D., McKenzie, D. J., & Craig, J. F. (2016). Metabolic rate in fishes: Definitions, methods and significance for conservation physiology. Journal of Fish Biology, 88, 1–9. https://doi.org/10.1111/jfb.12873
Chun, S. N., Cocherell, S. A., Cocherell, D. E., Miranda, J. B., Jones, G. J., Graham, J., … Cech, J. J., Jr. (2011). Displacement, velocity preference, and substrate use of three native California stream fishes in simulated pulsed flows. Environmental Biology of Fishes, 90, 43–52. https://doi.org/10.1007/s10641-010-9716-8
Cocherell, S. A., Chun, S. N., Cocherell, D. E., Thompson, L. C., Klimley, A. P., & Cech, J. J. (2012). A lateral-displacement flume for fish behavior and stranding studies during simulated pulsed flows. Environmental Biology of Fishes, 93, 143–150. https://doi.org/10.1007/s10641-011-9894-z
Cooke, S. J., Hinch, S. G., LuCaS, M. C., & Lutcavage, M. (2012). Biotelemetry and biologging. In Fisheries techniques (3rd ed., pp. 819–860). Bethesda, MD: American Fisheries Society.
Cooke, S. J., Midwood, J. D., Thiem, J. D., Klimley, P., Lucas, M. C., Thorstad, E. B., … Ebner, B. C. (2013). Tracking animals in freshwater with electronic tags: Past, present and future. Animal Biotelemetry, 1(5), 5. https://doi.org/10.1186/2050-3385-1-5
Cooke, S. J., Thorstad, E. B., & Hinch, S. G. (2004). Activity and energetics of free-swimming fish: Insights from electromyogram telemetry. Fish & Fisheries, 5, 21–52. https://doi.org/10.1111/j.1467-2960.2004.00136.x
Costa, M., Boavida, I., Almeida, V., Cooke, S., & Pinheiro, A. (2018). Do artificial velocity refuges mitigate the physiological and behavioural consequences of hydropeaking on a freshwater Iberian cyprinid? Ecohydrology, 11. https://doi.org/10.1002/eco.1983
Costa, M., Ferreira, M., Pinheiro, A., & Boavida, I. (2019). The potential of lateral refuges for Iberian barbel under simulated hydropeaking conditions. Ecological Engineering, 127, 567–578. https://doi.org/10.1016/J.ECOLENG.2018.07.029
Costa, M., Fuentes-Pérez, J., Boavida, I., Tuhtan, J., & Pinheiro, A. (2019). Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures. PLoS One, 14, e0211115. https://doi.org/10.1371/journal.pone.0211115
Costa, M., Lennox, R., Katopodis, C., & Cooke, S. (2017). Is there evidence for flow variability as an organism-level stressor in fluvial fish? Journal of Ecohydraulics, 2, 68–83. https://doi.org/10.1080/24705357.2017.1287531
Couto, T. B. A., & Olden, J. F. (2018). Global proliferation of small hydropower plants – science and policy. Frontiers in Ecology and the Environment, 16(2), 91–100. https://doi.org/10.1002/fee.1746
Davison, W., & Herbert, N. A. (2013). Swimming-enhanced growth. In A. P. Palstra & J. V. Planas (Eds.), Swimming physiology of fish: Towards using exercise to farm a FitFish in sustainable aquaculture (pp. 172–202). Berlin: Springer.
de Lima, R. L. P., Boogaard, F. C., & de Graaf-van Dinther, R. E. (2020). Innovative water quality and ecology monitoring using underwater unmanned vehicles: Field applications, challenges and feedback from water managers. Water, 12, 1196. https://doi.org/10.3390/w12041196
De Vocht, A., & Baras, E. (2005). Effects of hydropeaking on migrations and home range of adult Barbel (Barbus barbus) in the river Meuse. Aquatic telemetry: advances and applications. Paper presented at Proceedings of the Fifth Conference on Fish Telemetry held in Europe. FAO/COISPA, Rome.
Demetillo, A. T., & Taboada, E. (2019). Real-time water quality monitoring for small aquatic area using unmanned surface vehicle. Engineering, Technology & Applied Science Research, 9, 3959–3964. https://doi.org/10.48084/etasr.2661
Drown, M. K., DeLiberto, A. N., Crawford, D. L., & Oleksiak, M. F. (2020). An innovative setup for high-throughput respirometry of small aquatic animals. Frontiers in Marine Science, 7, 581104. https://doi.org/10.3389/fmars.2020.581104
Dunbabin, M., & Marques, L. (2012). Robotics for environmental monitoring: Significant advancements and applications. IEEE Robotics & Automation Magazine, 19(1), 24–39. https://doi.org/10.1109/MRA.2011.2181683
Ege, R., & Krogh, A. (1914). On the relation between the temperature and the respiratory exchange in fishes. Internationale Revue der Gesamten Hydrobiologie, 7, 48–55.
Enders, E. C., & Boisclair, D. (2016). Effects of environmental fluctuations on fish metabolism: Atlantic salmon Salmo salar as a case study. Journal of Fish Biology, 88, 344–358. https://doi.org/10.1111/jfb.12786
Eriksen, N. T. (2002). Accuracy and precision of aquatic respirometers with emphasis on monophase oxystats. Fish Physiology and Biochemistry, 26, 139–147. https://doi.org/10.1023/A:1025461900063
Esakki, B., Ganesan, S., Mathiyazhagan, S., Ramasubramanian, K., Gnanasekaran, B., Son, B., … Choi, J. S. (2018). Design of amphibious vehicle for unmanned mission in water quality monitoring using internet of things. Sensors, 18(10), 3318. https://doi.org/10.3390/s18103318
Farrel, A. P. (2008). Comparisons of swimming performance in rainbow trout using constant acceleration and critical swimming speed tests. Journal of Fish Biology, 72(3), 693–710. https://doi.org/10.1111/j.1095-8649.2007.01759.x
Flodmark, L. E. W., Forseth, T., L'Abée-Lund, J. H., & Vøllestad, L. A. (2006). Behaviour and growth of juvenile brown trout exposed to fluctuating flow. Ecology of Freshwater Fish, 15, 57–65. https://doi.org/10.1111/j.1600-0633.2006.00127.x
Flodmark, L. E. W., Urke, H. A., Halleraker, J. H., Arnekleiv, J. V., Vollestad, L. A., & Poléo, A. B. S. (2002). Cortisol and glucose responses in juvenile brown trout subjected to a fluctuating flow regime in an artificial stream. Journal of Fish Biology, 60, 238–248. https://doi.org/10.1006/jfbi.2001.1845
Flynn, K. F., & Chapra, S. C. (2014). Remote sensing of submerged aquatic vegetation in a shallow non-turbid river using an unmanned aerial vehicle. Remote Sensing, 6, 12815–12836. https://doi.org/10.3390/rs61212815
Gibeau, P., Connors, B. M., & Palen, W. J. (2017). Run-of-River hydropower and salmonids: potential effects and perspective on future research. Canadian Journal of Fisheries and Aquatic Sciences, 74(7), 1135–1149. https://doi.org/10.1139/cjfas-2016-0253
Goldspink, G. (1977). Mechanics and energetics of muscle in animals of different sizes, with particular reference to the muscle fiber composition of vertebrate muscle. In T. J. Pedley (Ed.), Scale effects in animal locomotion of vertebrate muscle. Cambridge, MA: Academic Press.
Halleraker, J. H., Saltveit, S. J., Harby, A., Arnekleiv, J. V., Fjeldstad, H.-P., & Kohler, B. (2003). Factors influencing stranding of wild juvenile brown trout (Salmo trutta) during rapid and frequent flow decreases in an artificial stream. River Research and Application, 19, 589–603. https://doi.org/10.1002/rra.752
Harby, A., & Noack, M. (2013). Rapid flow fluctuations and impacts on fish and the aquatic ecosystem. In I. Maddock, A. Harby, P. Kemp, & P. Wood (Eds.), Ecohydraulics—An integrated approach (pp. 323–335). Hoboken, NJ: Wiley Blackwell.
Higham, J. & Plater, A. (2021). ‘Flowonthego’—flow tracking technology on your smartphone. EGU General Assembly 2021, 19–30 Apr 2021, EGU21-5902. https://doi.org/10.5194/egusphere-egu21-5902.
Jepsen, N., Koed, A., Thorstad, E. B., & Baras, E. (2002). Surgical implantation of telemetry transmitters in fish: How much have we learned? Hydrobiologia, 483, 239–248. https://doi.org/10.1023/A:1021356302311
Jepsen, N., Thorstad, E. B., Havn, T., & Lucas, M. C. (2015). The use of external electronic tags on fish: An evaluation of tag retention and tagging effects. Animal Biotelemetry, 3, 49. https://doi.org/10.1186/s40317-015-0086-z
Jones, N. E. (2014). The dual nature of hydropeaking rivers: Is ecopeaking possible? River Research and Applications, 30, 521–526. https://doi.org/10.1002/rra.2653
Koparan, C., Koc, A. B., Privette, C. V., & Sawyer, C. B. (2018). In situ water quality measurements using an unmanned aerial vehicle (UAV) system. Water, 10, 264. https://doi.org/10.3390/w10030264
Krimmer, A. N., Paul, A. J., Hontela, A., & Rasmussen, J. B. (2011). Behavioural and physiological responses of brook trout Salvelinus fontinalis to midwinter flow reduction in a small ice-free mountain stream. Journal of Fish Biology, 79, 707–725. https://doi.org/10.1111/j.1095-8649.2011.03053.x
Lally, H. T., O'Connor, I., Jensen, O. P., & Graham, C. T. (2019). Can drones be used to conduct water sampling in aquatic environments? A review. Science of the Total Environment, 670, 569–575. https://doi.org/10.1016/j.scitotenv.2019.03.252
Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Pajuelo Madrigal, V., Mallinis, G., … Toth, B. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10(4), 641. https://doi.org/10.3390/rs10040641
Mengistu, S. B., Palstra, A. P., Mulder, H. A., Benzie, J. A. H., Trinh, T. Q., Roozeboom, C., & Komen, H. (2021). Heritable variation in swimming performance in Nile tilapia (Oreochromis niloticus) and negative genetic correlations with growth and harvest weight. Scientific Reports, 11, 11018. https://doi.org/10.1038/s41598-021-90418-w
Mochnacz, N. J., Kissinger, B. C., Deslauries, D., Guzzo, M. M., Enders, E. C., Anderson, W. G., … Treverg, J. R. (2017). Development and testing of a simple field-based intermittent-flow respirometry system for riverine fishes conservation. Physiology, 5(1), cox048. https://doi.org/10.1093/conphys/cox048
Moreira, M., Costa, M. J., Valbuena-Castro, J., Pinheiro, A. N., & Boavida, I. (2020). Cover or velocity: What triggers Iberian Barbel (Luciobarbus bocagei) refuge selection under experimental hydropeaking conditions? Water, 12, 317. https://doi.org/10.3390/w12020317
Murchie, K. J., Hair, K. P. E., Pullen, C. E., Redpath, T. D., Stephens, H. R., & Cooke, S. J. (2008). Fish response to modified flow regimes in regulated rivers: Research methods, effects and opportunities. River Research and Applications, 24, 197–217. https://doi.org/10.1002/rra.1058
Nagrodski, A., Raby, G. D., Hasler, C. T., Taylor, M. K., & Cooke, S. J. (2012). Fish stranding in freshwater systems: Sources, consequences and mitigation. Environmental Management, 103, 133–141. https://doi.org/10.1016/j.jenvman.2012.03.007
Naiman, R. J., Latterell, J. J., Pettit, N. E., & Olden, J. D. (2008). Flow variability and the vitality of river system. Comptes Rendus Geoscience, 340, 629–643. https://doi.org/10.1016/j.crte.2008.01.002
Niimi, A. J. (1978). Lag adjustment between estimated and actual physiological responses conducted in flow-through systems. Journal of the Fisheries Research Board of Canada, 35, 1265–1269. https://doi.org/10.1139/f78-197
Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world's large river systems. Science, 308, 405–408. https://doi.org/10.1126/science.1107887
Norgren, P., Ludvigsen, M., Ingebretsen, T., & Hovstein, V.E. (2016). Tracking and remote monitoring of an autonomous underwater vehicle using an unmanned surface vehicle in the Trondheim fjord. Paper presented at OCEANS 2015—MTS/IEEE Washington. DOI: https://doi.org/10.23919/oceans.2015.7401975.
Ødegård, Ø., Sørensen, A. J., Hansen, R. E., & Ludvigsen, M. (2016). A new method for underwater archaeological surveying using sensors and unmanned platforms. IFAC-PapersOnLine, 49, 486–493. https://doi.org/10.1016/j.ifacol.2016.10.453
Olden, J. D., & Naiman, R. J. (2010). Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology, 55, 86–107. https://doi.org/10.1111/j.1365-2427.2009.02179.x
Oliveira, I., Alexandre, C. M., Quintella, B. R., & Almeida, P. R. (2020). Impact of flow regulation for hydroelectric production in the movement patterns, growth and condition of a potamodromous fish species. Ecohydrology, e2250. https://doi.org/10.1002/eco.2250
Palstra, A., van Ginneken, V., & van den Thillart, G. (2008). Cost of transport and optimal swimming speeds in farmed and wild European silver eels (Anguilla anguilla). Comparative Biochemistry and Physiology A, 151, 37–44. https://doi.org/10.1016/j.cbpa.2008.05.011
Palstra, A. P., Mendez, S., Dirks, R. P., & Schaaf, M. J. M. (2019). Cortisol acting through the glucocorticoid receptor is not responsible for exercise-enhanced growth, but does affect the white skeletal muscle transcriptome in zebrafish (Danio rerio). Frontiers in Physiology, 9, 1889. https://doi.org/10.3389/fphys.2018.01889
Palstra, A. P., Mes, D., Kusters, K., Roques, J. A. C., Flik, G., Kloet, K., & Blonk, R. J. W. (2015). Forced sustained swimming exercise at optimal speed enhances growth of yellowtail kingfish (Seriola lalandi). Frontiers in Physiology, 5, 506. https://doi.org/10.3389/fphys.2014.00506
Palstra, A. P., Tudorache, C., Rovira, M., Brittijn, B., Burgerhout, E., van den Thillart, G. E. E. J. M., … Planas, J. V. (2010). Establishing zebrafish (Danio rerio) as a novel exercise model: Swimming economy, swimming-enhanced growth and regulation of muscle growth marker gene expression. PLoS One, 5(12), e14483. https://doi.org/10.1371/journal.pone.0014483
Pankhurst, N. W. (2011). The endocrinology of stress in fish: An environmental perspective. General and Comparative Endocrinology, 170, 265–275. https://doi.org/10.1016/j.ygcen.2010.07.017
Pereira, T. J., Almeida, P. R., Quintella, B. R., Gonninsaeter, A., Costa, M. J., Marques, J. P., & Costa, J. L. (2021). Fine-scale behaviour of the Lusitanian toadfish assessed in situ with the AccelTag. Animal Biotelemetry, 9, 10. https://doi.org/10.1186/s40317-021-00231-5
Perks, M. T., Dal Sasso, S. F., Hauet, A., Jamieson, E., Le Coz, J., Pearce, S., & Manfreda, S. (2020). Towards harmonisation of image velocimetry techniques for river surface velocity observations. Earth System Science Data, 12(3), 1545–1559. https://doi.org/10.5194/essd-12-1545-2020
Pizarro, A., Dal Sasso, S. F., Perks, M., & Manfreda, S. (2020). Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow. Hydrology and Earth System Sciences, 24, 5173–5185. https://doi.org/10.5194/hess-24-5173-2020
Poff, N. L., & Allan, J. D. (1995). Functional organizational of stream fish assemblages in relation to hydrological variability. Ecology, 76(2), 606–627.
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., … Stromberg, J. C. (1997). The natural flow regime. Bioscience, 47(11), 769–784. https://doi.org/10.2307/1313099
Poff, N. L., & Zimmerman, J. K. (2010). Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology, 55, 194–205. https://doi.org/10.1111/j.1365-2427.2009.02272.x
Rato, A. S., Alexandre, C. M., Almeida, P. R., Costa, J. L., & Quintella, B. R. (2021). Effects of hydropeaking on the behaviour, fine-scale movements and habitat selection of an Iberian cyprinid fish. River Research and Applications, 37, 1365–1375. https://doi.org/10.1002/rra.3848
Ribi, J.-M., Boillat, J.-L., Peter, A., & Schleiss, A. J. (2014). Attractiveness of a lateral shelter in a channel as a refuge for juvenile brown trout during hydropeaking. Aquatic Sciences, 76, 527–541. https://doi.org/10.1007/s00027-014-0351-x
Richter, B. D., Baumgartner, J. V., Wigington, R., & Braun, D. P. (1998). How much water does a river need? Freshwater Biology, 37, 231–249.
Robertson, M. J., Pennell, C. J., Scruton, D. A., Robertson, G. J., & Brown, J. A. (2004). Effect of increased flow on the behavior of Atlantic salmon parr in winter. Journal of Fish Biology, 65, 1070–1079. https://doi.org/10.1111/j.0022-1112.2004.00516.x
Rocaspana, R., Aparicio, E., Palau-Ibars, A., Guillem, R., & Alcaraz, C. (2019). Hydropeaking effects on movement patterns of brown trout (Salmo trutta L.). River Research and Applications, 35(6), 646–655. https://doi.org/10.1002/rra.3432
Saltveit, S. J., Halleraker, J. H., Arnekleiv, J. V., & Harby, A. (2001). Field experiments on stranding in juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) during rapid flow decreases caused by hydropeaking. Regulated Rivers, 17, 609–622. https://doi.org/10.1002/rrr.652
Scherer, E. (1992). Behavioural responses as indicators of environmental alterations: Approaches, results, developments. Journal of Applied Ichthyology, 8(1–4), 122–131. https://doi.org/10.1111/j.1439-0426.1992.tb00674.x
Scholander, P. F., Haugaard, N., & Irving, L. (1943). A volumetric respirometer for aquatic animals. Review of Scientific Instruments, 14, 48–51. https://doi.org/10.1063/1.1770119
Scruton, D. A., Ollerhead, L. M. N., Clarke, K. D., Pennell, C., Alfredsen, K., Harby, A., & Kelley, D. (2003). The behavioural response of juvenile Atlantic salmon (Salmon salar) and brook trout (Salvelinus fontinalis) to experimental hydropeaking on a Newfoundland (Canada) river. River Research and Applications, 19, 577–587. https://doi.org/10.1002/rra.733
Scruton, D. A., Pennell, C. J., Robertson, M. J., Ollerhead, L. M. N., Clarke, K. D., Alfredsen, K., … McKinley, R. S. (2005). Seasonal response of juvenile Atlantic Salmon to experimental hydropeaking power generation in Newfoundland, Canada. North American Journal of Fisheries Management, 25, 964–974. https://doi.org/10.1577/M04-133.1
Shkurti, F., Xu, A., Meghjani, M., Gamboa Higuera, J. C., Girdhar, Y., Giguere, P., … Dudek, G. (2012). Multi-domain monitoring of marine environments using a heterogeneous robot team. IEEE International Conference on Intelligent Robots and Systems, 2012, 1747–1753. https://doi.org/10.1109/IROS.2012.6385685
Slobodkin, L. B., & Rapoport, A. (1974). An optimal strategy of evolution. The Quarterly Review of Biology, 49(3), 181–200. https://doi.org/10.1086/408082
Sloman, K. A., Gilmour, K. M., Taylor, A. C., & Metcalfe, N. B. (2000). Physiological effects of dominance hierarchies within groups of brown trout, Salmo trutta, held under simulated natural conditions. Fish Physiology and Biochemistry, 22, 11–20.
Sloman, K. A., Taylor, A. C., Metcalfe, N. B., & Gilmour, K. M. (2001). Effects of an environmental perturbation on the social behaviour and physiological function of brown trout. Animal Behaviour, 61, 325–333. https://doi.org/10.1006/anbe.2000.1567
Steffensen, J. F. (1989). Some errors in respirometry of aquatic breathers: How to avoid and correct for them. Fish Physiology and Biochemistry, 6(1), 49–59. https://doi.org/10.1007/BF02995809
Sullivan, G. H., Hoefener, C., & Bolie, V. W. (1963). Electronic systems for biological telemetry. In L. E. Slater (Ed.), Bio-telemetry: The use of telemetry in animal behaviour and physiology in relation to ecological problems (pp. 83–106). London: Pergamon Press.
Svendsen, M. B. S., Bushnell, P. G., Christensen, E. A. F., & Steffensen, J. F. (2016). Sources of variation in oxygen consumption of aquatic animals demonstrated by simulated constant oxygen consumption and respirometers of different sizes. Journal of Fish Biology, 88(1), 51–64. https://doi.org/10.1111/jfb.12851
Svendsen, M. B. S., Bushnell, P. G., & Steffensen, J. F. (2016). Design and setup of intermittent-flow respirometry system for aquatic organisms. Journal of Fish Biology, 88(1), 26–50. https://doi.org/10.1111/jfb.12797
Taylor, M. K., Cook, K. V., Hasler, C. T., Schmidt, D. C., & Cooke, S. J. (2012). Behaviour and physiology of mountain whitefish (Prosopium williamsoni) relative to short-term changes in river flow. Ecology of Freshwater Fish, 21, 609–616. https://doi.org/10.1111/j.1600-0633.2012.00582.x
Taylor, M. K., Hasler, C. T., Hinch, S. G., Lewis, B., Schmidt, D. C., & Cooke, S. J. (2014). Reach-scale movements of bull trout (Salvelinus confluentus) relative to hydropeaking operations in the Columbia River, Canada. Ecohydrology, 7, 1079–1086. https://doi.org/10.1002/eco.1429
Tmušić, G., Manfreda, S., Aasen, H., James, M. R., Gonçalves, G., Ben-Dor, E., … McCabe, M. F. (2020). Current practices in UAS-based environmental monitoring. Remote Sensing, 12, 1001. https://doi.org/10.3390/rs12061001
Toffolon, M., Siviglia, A., & Zolezzi, G. (2010). Thermal wave dynamics in rivers affected by hydropeaking. Water Resources Research, 46, W08536. https://doi.org/10.1029/2009WR008234
Tuhtan, J. A., Fuentes-Perez, J. F., Toming, G., & Kruusmaa, M. (2017). Flow velocity estimation using a fish-shaped lateral line probe with product-moment correlation features and a neural network. Flow Measurement and Instrumentation, 54, 1–8. https://doi.org/10.1016/j.flowmeasinst.2016.10.017
Valentin, S., Sempeski, P., Souchon, Y., & Gaudin, P. (1994). Short-term habitat use by young grayling, Thymallus thymallus L., under variable flow conditions in an experimental stream. Fisheries Management and Ecology, 1, 57–65.
Vehanen, T., Bjerket, P. L., Heggenes, J., Huusko, A., & Mäki-Petäys, A. (2000). Effect of fluctuating flow and temperature on cover type selection and behaviour by juvenile brown trout in artificial flumes. Journal of Fish Biology, 56, 923–937. https://doi.org/10.1006/jfbi.1999.1215
Vehanen, T., Jurvelius, J., & Lahti, M. (2005). Habitat utilisation by fish community in a short-term regulated river reservoir. Hydrobiologia, 545, 257–270. https://doi.org/10.1007/s10750-005-3318-z
Vignudelli, S., Scozzari, A., Abileah, R., Gómez-Enri, J., Benveniste, J., & Cipollini, P. (2019). Chapter four—Water surface elevation in coastal and inland waters using satellite radar altimetry. In V. Maggioni & C. Massari (Eds.), Extreme hydroclimatic events and multivariate hazards in a changing environment (pp. 87–127). Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-814899-0.00004-3
Vilizzi, L., & Copp, G. H. (2005). An analysis of 0+ barbel (Barbus barbus) response to discharge fluctuations in a flume. River Research and Applications, 21, 421–438. https://doi.org/10.1002/rra.806
Wibowo, N. S., Destarianto, P., Riskiawan, H. Y., Agustianto, K., & Kautsar, S. (2018). Development of low-cost autonomous surface vehicles (ASV) for watershed quality monitoring. Paper presented at 6th international conference on information and communication technology (ICoICT), 489-494. DOI: https://doi.org/10.1109/ICoICT.2018.8528719.
Young, P. S., Cech, J. J., & Thompson, L. C. (2011). Hydropower-related pulsed-flow impacts on stream fishes: A brief review, conceptual model, knowledge gaps, and research needs. Reviews in Fish Biology and Fisheries, 21, 713–731. https://doi.org/10.1007/s11160-011-9211-0