Atmospheric escape; Dust cycle; Mars; Mars system; Paleoclimate; Transport process; Water cycle; Geology; Space and Planetary Science
Abstract :
[en] Japan Aerospace Exploration Agency (JAXA) plans a Phobos sample return mission (MMX: Martian Moons eXploration). In this study, we review the related works on the past climate of Mars, its evolution, and the present climate and weather to describe the scientific goals and strategies of the MMX mission regarding the evolution of the Martian surface environment. The MMX spacecraft will retrieve and return a sample of Phobos regolith back to Earth in 2029. Mars ejecta are expected to be accumulated on the surface of Phobos without being much shocked. Samples from Phobos probably contain all types of Martian rock from sedimentary to igneous covering all geological eras if ejecta from Mars could be accumulated on the Phobos surface. Therefore, the history of the surface environment of Mars can be restored by analyzing the returned samples. Remote sensing of the Martian atmosphere and monitoring ions escaping to space while the spacecraft is orbiting Mars in the equatorial orbit are also planned. The camera with multi-wavelength filters and the infrared spectrometer onboard the spacecraft can monitor rapid transport processes of water vapor, dust, ice clouds, and other species, which could not be traced by the previous satellites on the sun-synchronous polar orbit. Such time-resolved pictures of the atmospheric phenomena should be an important clue to understand both the processes of water exchange between the surface/underground reservoirs and the atmosphere and the drivers of efficient material transport to the upper atmosphere. The mass spectrometer with unprecedented mass resolution can observe ions escaping to space and monitor the atmospheric escape which has made the past Mars to evolve towards the cold and dry surface environment we know today. Together with the above two instruments, it can potentially reveal what kinds of atmospheric events can transport tracers (e.g., H2O) upward and enhance the atmospheric escape. Graphical Abstract: [Figure not available: see fulltext.].
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Ogohara, Kazunori ; Faculty of Science, Kyoto Sangyo University, Kyoto, Japan
Nakagawa, Hiromu; Graduate School of Science, Tohoku University, Sendai, Japan
Aoki, Shohei ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Kouyama, Toru; Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
Usui, Tomohiro; Department of Solar System Sciences, Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan
Terada, Naoki; Graduate School of Science, Tohoku University, Sendai, Japan
Imamura, Takeshi; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
Montmessin, Franck; LATMOS/IPSL, CNRS, Sorbonne Université, UVSQ-UPSaclay, Guyancourt, France
Brain, David; LASP/University of Colorado, Boulder, United States
Doressoundiram, Alain; LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France
Gautier, Thomas; LATMOS/IPSL, CNRS, Sorbonne Université, UVSQ-UPSaclay, Guyancourt, France
Hara, Takuya; Space Sciences Laboratory, University of California, Berkeley, Berkeley, United States
Harada, Yuki; Graduate School of Science, Kyoto University, Kyoto, Japan
Ikeda, Hitoshi; Research and Development Directorate, Japan Aerospace Exploration Agency, Sagamihara, Japan
Koike, Mizuho; Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima, Japan
Leblanc, François; LATMOS/CNRS, Sorbonne Université, UVSQ, Paris, France
Ramirez, Ramses; Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan ; Space Science Institute, Boulder, United States ; Department of Physics, College of Sciences, University of Central Florida, Orlando, United States
Sawyer, Eric; CNES, Toulouse, France
Seki, Kanako; Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Tokyo, Japan
Spiga, Aymeric; Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace (LMD/IPSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), École Polytechnique, École Normale Supérieure (ENS), Paris, France ; Institut Universitaire de France, Paris, France
Vandaele, Ann Carine; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Yokota, Shoichiro; Graduate School of Science, Osaka University, Toyonaka, Japan
Barucci, Antonella; LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France
JSPS - Japan Society for the Promotion of Science Earth-Life Science Institute (ELSI) National Institutes of Natural Sciences: Astrobiology Center
Funding text :
RMR receives funding from the Earth-Life Science Institute (ELSI) and the National Institutes of Natural Sciences: Astrobiology Center (grant number JY310064). Our work was supported by ISAS/JAXA as a part of Phase-A/B activities of MMX and by JSPS KAKENHI to TU (JP 17H06459), TK (JP20H01958, JP19K14789), HN (JP20H04605, JP19K03943), SY (JP20K04039), and NT (JP18KK0093, JP19H00707, JP20H00192).The SPICE toolkit released from the Navigation and Ancillary Information Facility was used for simulations of the expected Mars views and the spatial and temporal distributions of the sub-spacecraft points on Mars. We thank to the MMX engineering team for creating some SPICE kernels. Also, we would like to thank the other members of the Mars System sub-science team, especially O. Korablev and H. Kurokawa, for looking over this manuscript and for their many helpful comments. We also would like to thank K. Masunaga for his great contribution in replying to the reviewers' comments. RMR acknowledges support by the Earth-Life Science Institute (ELSI) and the National Institutes of Natural Sciences: Astrobiology Center (Grant Number JY310064). This work was supported by ISAS/JAXA as a part of Phase-A/B activities of MMX and by JSPS KAKENHI to TU (JP 17H06459), TK (JP20H01958, JP19K14789), HN (JP20H04605, JP19K03943), SY (JP20K04039), and NT (JP18KK0093, JP19H00707, JP20H00192).The SPICE toolkit released from the Navigation and Ancillary Information Facility was used for simulations of the expected Mars views and the spatial and temporal distributions of the sub-spacecraft points on Mars. We thank to the MMX engineering team for creating some SPICE kernels. Also, we would like to thank the other members of the Mars System sub-science team, especially O. Korablev and H. Kurokawa, for looking over this manuscript and for their many helpful comments. We also would like to thank K. Masunaga for his great contribution in replying to the reviewers' comments. RMR acknowledges support by the Earth-Life Science Institute (ELSI) and the National Institutes of Natural Sciences: Astrobiology Center (Grant Number JY310064). This work was supported by ISAS/JAXA as a part of Phase-A/B activities of MMX and by JSPS KAKENHI to TU (JP 17H06459), TK (JP20H01958, JP19K14789), HN (JP20H04605, JP19K03943), SY (JP20K04039), and NT (JP18KK0093, JP19H00707, JP20H00192).
Agee CB, Wilson NV, McCubbin FN et al (2013) Unique meteorite from early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Science 339:780–785. 10.1126/science.1228858 DOI: 10.1126/science.1228858
Amerstorfer UV, Gröller H, Lichtenegger H, Lammer H, Tian F, Noack L, Scherf M, Johnstone C, Tu L, Guedel M (2017) Escape and evolution of Mars’s CO2 atmosphere: influence of suprathermal atoms. J Geophys Res Planets 122:1321–1337. 10.1002/2016JE005175 DOI: 10.1002/2016JE005175
Aoki S, Vandaele AC, Daerden F, Villanueva GL, Liuzzi G, Thomas IR, Erwin JT, Trompet L, Robert S, Neary L, Viscardy S, Clancy RT, Smith MD, Lopez-Valverde MA, Hill B, Ristic B, Patel MR, Bellucci G, Lopez-Moreno J-J (2019) Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. J Geophys Res Planets 124(12):3482–3497. 10.1029/2019JE006109 DOI: 10.1029/2019JE006109
Asamura K, Kazama Y, Yokota S, Kasahara S, Miyoshi Y (2018) Low-energy particle experiments—ion analyzer (LEPi) onboard the ERG (Arase) satellite. Earth Planets Space 70:70. 10.1186/s40623-018-0846-0 DOI: 10.1186/s40623-018-0846-0
Atreya SK, Trainer MG, Franz HB et al (2013) Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on curiosity and implications for atmospheric loss. Geophys Res Lett 40:5605–5609. 10.1002/2013GL057763 DOI: 10.1002/2013GL057763
Avice G, Marty B (2020) Perspectives on atmospheric evolution from noble gas and nitrogen isotopes on earth. Mars Venus Space Sci Rev 216:36 DOI: 10.1007/s11214-020-00655-0
Barabash S, Norberg O (1994) Indirect detection of the Martian helium corona. Geophys Res Lett 21:1547–1550 DOI: 10.1029/94GL01074
Barabash S et al (2006) The analyzer of space plasmas and energetic atoms (ASPERA-3) for the Mars Express mission. Space Sci Rev 126:113–164. 10.1007/s11214-006-9124-8 DOI: 10.1007/s11214-006-9124-8
Barucci MA et al (2021) MIRS an Imaging spectrometer for the MMX mission. Earth Planets Space 10.1186/s40623-021-01423-2 DOI: 10.1186/s40623-021-01423-2
Batalha N, Domagal-Goldman SD, Ramirez R, Kasting JF (2015) Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model. Icarus 258:337–349. 10.1016/j.icarus.2015.06.016 DOI: 10.1016/j.icarus.2015.06.016
Batalha NE, Kopparapu RK, Haqq-Misra J, Kasting JF (2016) Climate cycling on early Mars caused by the carbonate–silicate cycle. Earth Planet Sci Lett 455:7–13. 10.1016/j.epsl.2016.08.044 DOI: 10.1016/j.epsl.2016.08.044
Beaty DW, Grady MM, McSween HY et al (2019) The potential science and engineering value of samples delivered to Earth by Mars sample return: International MSR Objectives and Samples Team (iMOST). Meteorit Planet Sci 54:S3-152. 10.1111/maps.13242 DOI: 10.1111/maps.13242
Bell JF, Wolff MJ, Malin MC et al (2009) Mars Reconnaissance Orbiter Mars Color Imager (MARCI): instrument description, calibration, and performance. J Geophys Res 114:1–41. 10.1029/2008JE003315 DOI: 10.1029/2008JE003315
Bellucci JJ, Nemchin AA, Whitehouse MJ, Humayun M, Hewins R, Zanda B (2015) Pb-isotopic evidence for an early, enriched crust on Mars. Earth Planet Sci Lett 410:34–41. 10.1016/j.epsl.2014.11.018 DOI: 10.1016/j.epsl.2014.11.018
Bertrand T, Wilson RJ, Kahre MA et al (2020) Simulation of the 2018 global dust storm on mars using the NASA Ames Mars GCM: a multitracer approach. J Geophys Res Planets 125:1–36. 10.1029/2019JE006122 DOI: 10.1029/2019JE006122
Bibring JP, Soufflot A, Berthé M, Langevin Y, Gondet B, Drossart P, Bouyé M, Combes M, Puget P, Semery A, Bellucci G, Formisano V, Moroz V, Kottsov V, The OMEGA Co-I Team, Bonello G, Erard S, Forni O, Gendrin A, Manaud N, Poulet F, Poulleau G, Encrenaz T, Fouchet T, Melchiori R, Altieri F, Ignatiev N, Titov D, Zasova L, Coradini A, Capacionni F, Cerroni P, Fonti S, Mangold N, Pinet P, Schmitt B, Sotin C, Hauber E, Hoffmann H, Jaumann R, Keller U, Arvidson R, Mustard J, Forget F (2004) OMEGA: Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité in: Wilson A (ed) Mars Express: A European Mission to the Red Planet (ESA SP-1240), ISBN 92-9092-556-6, ISSN 0379-6566, ESA Publications Division Scientific.
Bibring JP, Langevin Y, Mustard JF et al (2006) Global mineralogical and aqueous mars history derived from OMEGA/Mars express data. Science 312:400–404. 10.1126/science.1122659 DOI: 10.1126/science.1122659
Boctor NZ, Alexander CO, Wang J, Hauri E (2003) The sources of water in Martian meteorites: clues from hydrogen isotope. Geochim Cosmochim Acta 67(3971):3989. 10.1016/S0016-7037(03)00234-5 DOI: 10.1016/S0016-7037(03)00234-5
Bogard DD, Johnson P (1983) Martian gases in an Antarctic meteorite? Science 221:651–654. 10.1126/science.221.4611.651 DOI: 10.1126/science.221.4611.651
Borg LE, Connelly JN, Nyquist LE, Shih C-Y, Wiesmann H, Reese Y (1999) The age of the carbonates in Martian meteorite ALH84001. Science 286:90–94. 10.1126/science.286.5437.90 DOI: 10.1126/science.286.5437.90
Brain D et al (2010) A comparison of global models for the solar wind interaction with Mars. Icarus 206:139–151. 10.1016/j.icarus.2009.06.030 DOI: 10.1016/j.icarus.2009.06.030
Brain DA, McFadden JP, Halekas JS et al (2015) The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophys Res Lett. 10.1002/2015GL065293 DOI: 10.1002/2015GL065293
Bridges JC, Hicks LJ, Treiman AH (2019) Carbonates on Mars. In: Filiberto J, Schwenzer SP (ed) Volatiles in the Martian crust, Elsevier, pp 89–118. https://doi.org/10.1016/B978-0-12-804191-8.00005-2
Burr DM, Williams RME, Wendell KD et al (2010) Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: formation mechanism and initial paleodischarge estimates. J Geophys Res Planets. 10.1029/2009JE003496 DOI: 10.1029/2009JE003496
Carlsson E, Fedorov A, Barabash S et al (2006) Mass composition of the escaping plasma at Mars. Icarus 182:320–328. 10.1016/j.icarus.2005.09.020 DOI: 10.1016/j.icarus.2005.09.020
Carr MH, Head JW III (2010) Geologic history of Mars. Earth Planet Sci Lett 294:185–203. 10.1016/j.epsl.2009.06.042 DOI: 10.1016/j.epsl.2009.06.042
Carr RH, Grady MM, Wright IP, Pillinger CT (1985) Martian atmospheric carbon dioxide and weathering products in SNC meteorites. Nature 314:248–250. 10.1038/314248a0 DOI: 10.1038/314248a0
Cassata WS (2017) Meteorite constraints on Martian atmospheric loss and paleoclimate. Earth Planet Sci Lett 479:322–329 DOI: 10.1016/j.epsl.2017.09.034
Cassata WS, Cohen BE, Mark DF et al (2018) Chronology of martian breccia NWA 7034 and the formation of the Martian crustal dichotomy. Sci Adv 4(5):eaap8306. 10.1126/sciadv.aap8306 DOI: 10.1126/sciadv.aap8306
Chaffin M, Deighan J, Schneider N et al (2017) Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nat Geosci 10:174–178. 10.1038/ngeo2887 DOI: 10.1038/ngeo2887
Chanteur GM, Dubinin E, Modolo R, Fraenz M (2009) Capture of solar wind alpha-particles by the Martian atmosphere. Geophys Res Lett 36:L23105. 10.1029/2009GL040235 DOI: 10.1029/2009GL040235
Chassefière E, Leblanc F (2004) Mars atmospheric escape and evolution; interaction with the solar wind. Planet Space Sci 52(11):1039–1058. 10.1016/j.pss.2004.07.002 DOI: 10.1016/j.pss.2004.07.002
Chicarro A, Martin P, and Trautner R (2004) The Mars Express mission: an overview. In: Wilson A (ed) Mars Express: A European Mission to the Red Planet (ESA SP-1240), ISBN 92-9092-556-6 ISSN 0379-6566, ESA Publications Division Scientific.
Clarke JT, Bertaux J-L, Chaufray J-Y, Gladstone GR, Quemerais E, Wilson JK, Bhattacharyya D (2014) A rapid decrease of the hydrogen corona of Mars. Geophys Res Lett 41:8013–8020. 10.1002/2014GL061803 DOI: 10.1002/2014GL061803
Conrad PG, Malespin CA, Franz HB et al (2016) In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth Planet Sci Lett 454:1–9. 10.1016/j.epsl.2016.08.028 DOI: 10.1016/j.epsl.2016.08.028
Craddock RA, Howard AD (2002) The case for rainfall on a warm, wet early Mars. J Geophys Res Planets. 10.1029/2001JE001505 DOI: 10.1029/2001JE001505
Cui J, Wu X-S, Gu H, Jiang F-Y, Wei Y (2019) Photochemical escape of atomic C and N on Mars: clues from a multi-instrument MAVEN dataset. Astron Astrophys 621:A23. 10.1051/0004-6361/201833749 DOI: 10.1051/0004-6361/201833749
Davis JM, Balme M, Grindrod PM et al (2016) Extensive Noachian fluvial systems in Arabia Terra: implications for early Martian climate. Geology 44:847–850. 10.1130/G38247.1 DOI: 10.1130/G38247.1
Davis JM, Gupta S, Balme M, Grindrod PM, Fawdon P, Dickeson ZI, Williams RM (2019) A diverse array of fluvial depositional systems in Arabia Terra: evidence for mid-Noachian to early Hesperian rivers on Mars. J Geophys Res Planets 124(7):1913–1934 DOI: 10.1029/2019JE005976
Delcourt D et al (2016) The Mass Spectrum Analyzer (MSA) on board the BepiColombo MMO. J Geophys Res Space Phys 121(7):6749–6762 DOI: 10.1002/2016JA022380
DiBraccio GA, Dann J, Espley JR et al (2017) MAVEN observations of tail current sheet flapping at Mars. J Geophys Res Space Phys 122:4308–4324. 10.1002/2016JA023488 DOI: 10.1002/2016JA023488
Dong Y, Fang X, Brain DA, McFadden JP, Halekas JS, Connerney JE, Curry SM, Harada Y, Luhmann JG, Jakosky BM (2015) Strong plume fluxes at Mars observed by MAVEN: an important planetary ion escape channel. Geophys Res Lett. 10.1002/2015GL065346 DOI: 10.1002/2015GL065346
Dong Y, Fang X, Brain DA, McFadden JP, Halekas JS, Connerney JEP, Eparvier F, Andersson L, Mitchell D, Jakosky BM (2017) Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. J Geophys Res Space Phys. 10.1002/2016JA023517 DOI: 10.1002/2016JA023517
Dong C, Bougher SW, Ma Y, Lee Y, Toth G, Nagy AF et al (2018) Solar wind interaction with the Martian upper atmosphere: roles of the cold thermosphere and hot oxygen corona. J Geophys Res Space Phys 123:6639–6654. 10.1029/2018JA025543 DOI: 10.1029/2018JA025543
Dubinin E, Fraenz M, Woch J, Duru F, Gurnett D, Modolo R, Barabash S, Lundin R (2009) Ionospheric storms on Mars: impact of the corotating interaction region. Geophys Res Lett 36:L01105. 10.1029/2008GL036559 DOI: 10.1029/2008GL036559
Dubinin E et al (2011) Ion energization and escape on Mars and Venus. In: Szego K (ed) The plasma environment of Venus, Mars, and Titan. Space Sciences Series of ISSI, vol 37. Springer, New York, https://doi.org/10.1007/978-1-4614-3290-6_6
Dundas CM, Bramson AM, Ojha L et al (2018) Exposed subsurface ice sheets in the Martian mid-latitudes. Science 359:199–201. 10.1126/science.aao1619 DOI: 10.1126/science.aao1619
Edberg NJT, Nilsson H, Williams AO, Lester M, Milan SE, Cowley SWH, Fränz M, Barabash S, Futaana Y (2010) Pumping out the atmosphere of Mars through solar wind pressure pulses. Geophys Res Lett 37:L03107. 10.1029/2009GL041814 DOI: 10.1029/2009GL041814
Ehlmann BL, Edwards CS (2014) Mineralogy of the Martian surface. Ann Rev Earth Planet Sci 42:291–315. 10.1146/annurev-earth-060313-055024 DOI: 10.1146/annurev-earth-060313-055024
Ehlmann BL, Mustard JF, Murchie SL, Bibring JP, Meunier A, Fraeman AA, Langevin Y (2011) Subsurface water and clay mineral formation during the early history of Mars. Nature 479:53–60. 10.1038/nature10582 DOI: 10.1038/nature10582
Fang X, Liemohn MW, Nagy AF, Ma Y, De Zeeuw DL, Kozyra JU, Zurbuchen TH (2008) Pickup oxygen ion velocity space and spatial distribution around Mars. J Geophys Res 113:A02210. 10.1029/2007JA012736 DOI: 10.1029/2007JA012736
Fang X et al (2017) The mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. J Geophys Res Space Phys. 10.1002/2016JA023509 DOI: 10.1002/2016JA023509
Fassett CI, Head JW (2008a) Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198:37–56. 10.1016/j.icarus.2008.06.016 DOI: 10.1016/j.icarus.2008.06.016
Fassett CI, Head JW III (2008b) The timing of Martian valley network activity: constraints from buffered crater counting. Icarus 195(1):61–89. 10.1016/j.icarus.2007.12.009 DOI: 10.1016/j.icarus.2007.12.009
Fedorova A, Bertaux JL, Betsis D et al (2018) Water vapor in the middle atmosphere of Mars during the 2007 global dust storm. Icarus 300:440–457. 10.1016/j.icarus.2017.09.025 DOI: 10.1016/j.icarus.2017.09.025
Fedorova A, Montmessin F, Korablev O, Luginin M, Trokhimovskiy A, Belyaev D, Ignatiev N, Lefèvre F, Alday J, Irwin P, Olsen K, Bertaux J-L, Millour E, Maattanen A, Shakun A, Grigoriev A, Patrakeev A, Korsa S, Kokonkov N, Baggio L, Forget F, Wilson C (2020) Stormy water on Mars: the distribution and saturation of atmospheric water during the dusty season. Science 367(6475):297–300. 10.1126/science.aay9522 DOI: 10.1126/science.aay9522
Fenton LK, Geissler PE, Haberle RM (2007) Global warming and climate forcing by recent albedo changes on Mars. Nature 446:646–649. 10.1038/nature05718 DOI: 10.1038/nature05718
Forget F, Pierrehumbert RT (1997) Warming early mars with carbon dioxide clouds that scatter infrared radiation. Science 278:1273–1276. 10.1126/science.278.5341.1273 DOI: 10.1126/science.278.5341.1273
Forget F, Wordsworth R, Millour E et al (2013) 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222:81–99. 10.1016/j.icarus.2012.10.019 DOI: 10.1016/j.icarus.2012.10.019
Fouchet T, Lellouch E, Ignatiev NI et al (2007) Martian water vapor: Mars Express PFS/LW observations. Icarus 190:32–49. 10.1016/j.icarus.2007.03.003 DOI: 10.1016/j.icarus.2007.03.003
Futaana Y et al (2008) Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planet Space Sci 56:873–880 DOI: 10.1016/j.pss.2007.10.014
Giuranna M, Wolkenberg P, Grassi D et al (2021) The current weather and climate of Mars: 12 years of atmospheric monitoring by the Planetary Fourier Spectrometer on Mars Express. Icarus 353:113406. 10.1016/j.icarus.2019.113406 DOI: 10.1016/j.icarus.2019.113406
Godin PJ, Ramirez RM, Campbell CL et al (2020) Collision-induced absorption of CH4-CO2 and H2-CO2 complexes and their effect on the ancient Martian atmosphere. J Geophys Res Planets 125:1–10. 10.1029/2019JE006357 DOI: 10.1029/2019JE006357
Greenwood JP, Itoh S, Sakamoto N, Vicenzi E, Yurimoto H (2008) Hydrogen isotope evidence for loss of water from Mars through time. Geophys Res Lett 35:L05203. 10.1029/2007GL032721 DOI: 10.1029/2007GL032721
Gröller H, Lichtenegger H, Lammer H, Shematovich VI (2014) Hot oxygen and carbon escape from the martian atmosphere. Planet Space Sci 98:93–105. 10.1016/j.pss.2014.01.007 DOI: 10.1016/j.pss.2014.01.007
Grotzinger JP, Gupta S, Malin MC, Rubin DM, Schieber J, Siebach K, Sumner DY, Stack KM, Vasavada AR, Arvidson RE, Calef F (2015) Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater. Science. 10.1126/science.aac7575 DOI: 10.1126/science.aac7575
Gu H, Cui J, Niu D, He Z, Li K (2020) Monte Carlo calculations of helium escape on Mars via Energy transfer from hot oxygen atoms. ApJ 902:121 DOI: 10.3847/1538-4357/abb6e9
Guzewich SD, Toigo AD, Wang H (2017) An investigation of dust storms observed with the Mars Color Imager. Icarus 289:199–213. 10.1016/j.icarus.2017.02.020 DOI: 10.1016/j.icarus.2017.02.020
Haberle RM, Kahre MA, Hollingsworth JL et al (2019a) Documentation of the NASA/Ames legacy mars global climate model: simulations of the present seasonal water cycle. Icarus 333:130–164. 10.1016/j.icarus.2019.03.026 DOI: 10.1016/j.icarus.2019.03.026
Haberle RM, Zahnle K, Barlow NG, Steakley KE (2019b) Impact degassing of H2 on early Mars and its effect on the climate system. Geophys Res Lett 46:13355–13362. 10.1029/2019GL084733 DOI: 10.1029/2019GL084733
Halevy I, Head JW (2014) Episodic warming of early Mars by punctuated volcanism. Nat Geosci 7:865–868. 10.1038/ngeo2293 DOI: 10.1038/ngeo2293
Halevy I, Fischer WW, Eiler JM (2011) Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 ± 4 °C in a near-surface aqueous environment. PNAS 108:16895–16899. 10.1073/pnas.1109444108 DOI: 10.1073/pnas.1109444108
Hara T, Seki K, Futaana Y, Yamauchi M, Yagi M, Matsumoto Y, Tokumaru M, Fedorov A, Barabash S (2011) Heavy-ion flux enhancement in the vicinity of the Martian ionosphere during CIR passage: Mars Express ASPERA-3 observations. J Geophys Res 116:A02309. 10.1029/2010JA015778 DOI: 10.1029/2010JA015778
Hara T et al (2015) Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophys Res Lett. 10.1002/2015GL065720 DOI: 10.1002/2015GL065720
Hara T et al (2016) MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields. J Geophys Res Space Phys. 10.1002/2016JA023347 DOI: 10.1002/2016JA023347
Harada Y et al (2015) Magnetic reconnection in the near-Mars magnetotail: MAVEN observations. Geophys Res Lett. 10.1002/2015GL065004 DOI: 10.1002/2015GL065004
Harada Y et al (2017) Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN. J Geophys Res Space Phys 122:5114–5131. 10.1002/2017JA023952 DOI: 10.1002/2017JA023952
Harada Y, Halekas JS, DiBraccio GA, Xu S, Espley J, McFadden JP et al (2018) Magnetic reconnection on dayside crustal magnetic fields at Mars: MAVEN observations. Geophys Res Lett 45:4550–4558. 10.1002/2018GL077281 DOI: 10.1002/2018GL077281
Harada Y, Halekas JS, Xu S, DiBraccio GA, Ruhunusiri S, Hara T et al (2020) Ion jets within current sheets in the Martian magnetosphere. J Geophys Res Space Phys 125:e2020JA028576. 10.1029/2020JA028576 DOI: 10.1029/2020JA028576
Harnett EM, Winglee RM (2006) Three-dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events. J Geophys Res 111:A09213. 10.1029/2006JA011724 DOI: 10.1029/2006JA011724
Hayworth BPC, Kopparapu RK, Haqq-Misra J et al (2020) Warming early Mars with climate cycling: the effect of CO2-H2 collision-induced absorption. Icarus 345:113770. 10.1016/j.icarus.2020.113770 DOI: 10.1016/j.icarus.2020.113770
Heavens NG, Kleinböhl A, Chaffin MS, Halekas JS, Kass DM, Hayne PO, McCleese DJ, Piqueux S, Shirley JH, Schofield JT (2018) Hydrogen escape from Mars enhanced by deep convection in dust storms. Nat Astron 2:126–132. 10.1038/s41550-017-0353-4 DOI: 10.1038/s41550-017-0353-4
Heavens NG, Kass DM, Shirley JH et al (2019) An observational overview of dusty deep convection in Martian dust storms. J Atmos Sci 76:3299–3326. 10.1175/JAS-D-19-0042.1 DOI: 10.1175/JAS-D-19-0042.1
Hennen M, White K, Shahgedanova M (2019) An assessment of SEVIRI imagery at various temporal resolutions and the effect on accurate dust emission mapping. Remote Sens 11(8):918. 10.3390/rs11080965 DOI: 10.3390/rs11080965
Hinson DP, Tyler D, Lewis SR et al (2019) The Martian daytime convective boundary layer: results from radio occultation measurements and a mesoscale model. Icarus 326:105–122. 10.1016/j.icarus.2019.02.028 DOI: 10.1016/j.icarus.2019.02.028
Hoke MR, Hynek BM, Tucker GE (2011) Formation timescales of large Martian valley networks. Earth Planet Sci Lett 312:1–12 DOI: 10.1016/j.epsl.2011.09.053
Howard AD, Moore JM, Irwin RP (2005) An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J Geophys Res Planets 110:1–20. 10.1029/2005JE002459 DOI: 10.1029/2005JE002459
Hu S, Lin Y, Zhang J et al (2014) NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite: Hydrogen isotope evidence for recent past underground hydrothermal activity on Mars. Geochim Cosmochim Acta 140:321–333. 10.1016/j.gca.2014.05.008 DOI: 10.1016/j.gca.2014.05.008
Hu R, Kass DM, Ehlmann BL, Yung YL (2015) Tracing the fate of carbon and the atmospheric evolution of Mars. Nat Commun 6:10003. 10.1038/ncomms10003 DOI: 10.1038/ncomms10003
Humayun M, Nemchin A, Zanda B et al (2013) Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503:513–516. 10.1038/nature12764 DOI: 10.1038/nature12764
Hyodo R, Genda H, Charnoz S, Rosenblatt P (2017) On the impact origin of Phobos and Deimos. I. Thermodynamic and physical aspects. Astrophys J 845:125. 10.3847/1538-4357/aa81c4 DOI: 10.3847/1538-4357/aa81c4
Hyodo R, Kurosawa K, Genda H, Usui T, Fujita K (2019) transport of impact ejecta from Mars to its moons as a means to reveal Martian history. Sci Rep 9:19833. 10.1038/s41598-019-56139-x DOI: 10.1038/s41598-019-56139-x
Inada A, Garcia-Comas M, Altieri F et al (2008) Dust haze in Valles Marineris observed by HRSC and OMEGA on board Mars Express. J Geophys Res 113:1–18. 10.1029/2007JE002893 DOI: 10.1029/2007JE002893
Inui S, Seki K, Namekawa T et al (2018) Cold dense ion outflow observed in the Martian-induced magnetotail by MAVEN. Geophys Res Lett 45:5283–5289. 10.1029/2018GL077584 DOI: 10.1029/2018GL077584
Inui S, Seki K, Sakai S et al (2019) Statistical study of heavy ion outflows from Mars observed in the Martian-induced magnetotail by MAVEN. J Geophys Res Space Phys 124:5482–5497. 10.1029/2018JA026452 DOI: 10.1029/2018JA026452
Irwin RP, Craddock RA, Howard AD, Flemming HL (2011) Topographic influences on development of Martian valley networks. J Geophys Res Planets. 10.1029/2010JE003620 DOI: 10.1029/2010JE003620
Ito Y, Hashimoto GL, Takahashi YO, Ishiwatari M, Kuramoto K (2020) H2O2-induced greenhouse warming on oxidized early Mars. Astrophys J 893(2):168 DOI: 10.3847/1538-4357/ab7db4
Jakosky BM, Jones JH (1997) The history of Martian volatiles. Rev Geophys 35:1–16. 10.1029/96RG02903 DOI: 10.1029/96RG02903
Jakosky BM, Lin RP, Grebowsky JM et al (2015) The mars atmosphere and volatile evolution (MAVEN) mission. Space Sci Rev 195:3–48. 10.1007/s11214-015-0139-x DOI: 10.1007/s11214-015-0139-x
Jakosky BM, Slipski M, Benna M et al (2017) Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar. Science 355:1408–1410. 10.1126/science.aai7721 DOI: 10.1126/science.aai7721
Jakosky BM, Brain D, Chaffin M et al (2018) Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 315:146–157. 10.1016/j.icarus.2018.05.030 DOI: 10.1016/j.icarus.2018.05.030
Kamada A, Kuroda T, Kasaba Y et al (2020) A coupled atmosphere–hydrosphere global climate model of early Mars: a ‘cool and wet’ scenario for the formation of water channels. Icarus 338:113567. 10.1016/j.icarus.2019.113567 DOI: 10.1016/j.icarus.2019.113567
Kameda S, Suzuki H, Takamatsu T et al (2017) Preflight calibration test results for optical navigation camera telescope (ONC-T) onboard the Hayabusa2 spacecraft. Space Sci Rev 208:17–31 DOI: 10.1007/s11214-015-0227-y
Kameda S et al (2021) Design of telescopic nadir imager for geomorphology (TENGOO) and observation of surface reflectance by optical chromatic imager (OROCHI) for the Martian Moons Exploration (MMX). Earth Planets Space. 10.1186/s40623-021-01462-9 DOI: 10.1186/s40623-021-01462-9
Kasting JF (1991) CO2 condensation and the climate of early Mars. Icarus 94(1):1–13 DOI: 10.1016/0019-1035(91)90137-I
Kawakatsu Y (2018) Mission design of Martian Moons eXploration (MMX). In: Paper presented at the 69th international astronautical congress. IAC-18-A3.3A.8.x47632, Bremen, 1–5 October 2018
Kawakatsu Y, Kuramoto K, Ogawa N, Ikeda H, Mimasu Y, Ono G, Sawada H, Yoshikawa K, Imada T, Otake H, Kusano H, Yamada K, Otsuki M, Baba M (2017) Mission concept of Martian moons exploration (MMX). In: Proceedings in the 68th international astronautical congress, IAC-17-A3-3A.5.x40742. Adelaide, 25–29 September 2017
Kerber L, Forget F, Wordsworth R (2015) Sulfur in the early Martian atmosphere revisited: experiments with a 3-D Global Climate Model. Icarus 261:133–148. 10.1016/j.icarus.2015.08.011 DOI: 10.1016/j.icarus.2015.08.011
Kite ES, Halevy I, Kahre MA et al (2013) Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223:181–210. 10.1016/j.icarus.2012.11.034 DOI: 10.1016/j.icarus.2012.11.034
Kite ES, Mischna MA, Gao P et al (2020) Methane release on Early Mars by atmospheric collapse and atmospheric reinflation. Planet Space Sci 181:104820. 10.1016/j.pss.2019.104820 DOI: 10.1016/j.pss.2019.104820
Kitzmann D (2016) Revisiting the scattering greenhouse effect of CO2 ice clouds. Astrophys J 817:L18. 10.3847/2041-8205/817/2/l18 DOI: 10.3847/2041-8205/817/2/l18
Kleinböhl A, Schofield JT, Kass DM, Abdou WA, Backus CR, Sen B, Shirley JH, Lawson WG, Richardson MI, Taylor FW, Teanby NA, McCleese DJ (2009) Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J Geophys Res 114(E10):E10006
Kleinböhl A, Spiga A, Kass DM et al (2020) Diurnal variations of dust during the 2018 global dust storm observed by the mars climate sounder. J Geophys Res Planets 125:1–21. 10.1029/2019JE006115 DOI: 10.1029/2019JE006115
Koike M, Nakada R, Kajitani I, Usui T, Tamenori Y, Sugahara H, Kobayashi A (2020) In-situ preservation of nitrogen-bearing organics in Noachian Martian carbonates. Nat Commun 11:1988. 10.1038/s41467-020-15931-4 DOI: 10.1038/s41467-020-15931-4
Korablev O, Montmessin F, Trokhimovskiy A et al (2018) The atmospheric chemistry suite (ACS) of three spectrometers for the ExoMars 2016 trace gas orbiter. Space Sci Rev 214:7. 10.1007/s11214-017-0437-6 DOI: 10.1007/s11214-017-0437-6
Kounaves SP, Oberlin EA (2019) Volatiles measured by the phoenix lander at the northern plains of Mars. In: Filiberto J, Schwenzer SP (eds) Volatiles in the Martian crust, Elsevier, pp 265–283. https://doi.org/10.1016/B978-0-12-804191-8.00009-X
Kounaves SP, Carrier BL, O’Neil GD et al (2014) Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: implications for oxidants and organics. Icarus 229:206–213. 10.1016/j.icarus.2013.11.012 DOI: 10.1016/j.icarus.2013.11.012
Krasnopolsky VA, Gladstone GR (1996) Helium on Mars: EUVE and PHOBOS data and implications for Mars’ evolution. J Geophys Res 101:15765–15772 DOI: 10.1029/96JA01080
Kulowski L, Wang H, Toigo AD (2017) The seasonal and spatial distribution of textured dust storms observed by Mars Global Surveyor Mars Orbiter Camera. Adv Space Res 59:715–721. 10.1016/j.asr.2016.10.028 DOI: 10.1016/j.asr.2016.10.028
Kuramoto K et al (2021) Martian moons exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planets. Earth Planets Space. 10.1186/s40623-021-01545-7 DOI: 10.1186/s40623-021-01545-7
Kurokawa H, Sato M, Ushioda M, Matsuyama T, Moriwaki R, Dohm JM, Usui T (2014) Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in martian meteorites. Earth Planet Sci Lett 394:179–185. 10.1016/j.epsl.2014.03.027 DOI: 10.1016/j.epsl.2014.03.027
Kurokawa H, Kurosawa K, Usui T (2018) A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus 299:443–459. 10.1016/j.icarus.2017.08.020 DOI: 10.1016/j.icarus.2017.08.020
Lammer H, Chassefière E, Karatekin Ö et al (2013) Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci Rev 174:113–154. 10.1007/s11214-012-9943-8 DOI: 10.1007/s11214-012-9943-8
Lammer H, Scherf M, Kurokawa H et al (2020) Loss and fractionation of noble gas isotopes and moderately volatile elements from planetary embryos and early venus. Earth Mars Space Sci Rev 216:74. 10.1007/s11214-020-00701-x DOI: 10.1007/s11214-020-00701-x
Lapen TJ, Righter M, Brandon AD, Debaille V, Beard BL, Shafer JT, Peslier AH (2010) A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science 328:347–351. 10.1126/science.1185395 DOI: 10.1126/science.1185395
Lee Y, Fang X, Gacesa M et al (2020) Effects of global and regional dust storms on the Martian hot O corona and photochemical loss. J Geophys Res Space Phys 125:e2019JA027115. 10.1029/2019JA027115 DOI: 10.1029/2019JA027115
Leshin LA (2000) Insights into Martian water reservoirs from analyses of Martian meteorite QUE94201. Geophys Res Lett 27:2017–2020. 10.1029/1999GL008455 DOI: 10.1029/1999GL008455
Leshin LA, Mahaffy PR, Webster CR et al (2013) Volatile, isotope, and organic analysis of Martian fines with the Mars curiosity rover. Science 341:1238937. 10.1126/science.1238937 DOI: 10.1126/science.1238937
Liuzzi G, Villanueva G, Crismani M, Smith MD, Mumma M, Daerden F, Aoki S, Vandaele AC, Clancy R, Erwin J, Thomas IR, Ristic B, Lopez-Moreno J-J, Bellucci G, Patel M (2020) Strong variability of Martian water ice clouds during dust storms revealed from ExoMars trace gas orbiter/NOMAD. J. Geophys. Res. Planets 125(4):e2019JE006250. 10.1029/2019JE006250 DOI: 10.1029/2019JE006250
Lundin R (2011) Ion acceleration and outflow from mars and venus: an overview. In: Szego K (ed) The plasma environment of Venus, Mars, and Titan. Space Sciences Series of ISSI, vol 37. Springer, New York. https://doi.org/10.1007/978-1-4614-3290-6_9
Lundin R, Dubinin EM (1992) Phobos-2 results on the ionospheric plasma escape from Mars. Adv Space Res 12(9):255–263 DOI: 10.1016/0273-1177(92)90338-X
Lundin R, Zakharov A, Pellinen R et al (1989) First measurements of the ionospheric plasma escape from Mars. Nature 341:609–612. 10.1038/341609a0 DOI: 10.1038/341609a0
Lundin R et al (1990) ASPERA/PHOBOS measurements of the ion outflow from the Martian ionosphere. Geophys Res Lett 17(6):873–876 DOI: 10.1029/GL017i006p00873
Lundin R, Barabash S, Fedorov A, Holmström M, Nilsson H, Sauvaud JA, Yamauchi M (2008) Solar forcing and planetary ion escape from Mars. Geophys Res Lett 35:L09203. 10.1029/2007GL032884 DOI: 10.1029/2007GL032884
Lundin R, Barabash S, Holmström M, Nilsson H, Yamauchi M, Dubinin EM, Fraenz M (2009) Atmospheric origin of cold ion escape from Mars. Geophys Res Lett 36:L17202. 10.1029/2009GL039341 DOI: 10.1029/2009GL039341
Ma Y, Nagy AF, Sokolov IV, Hansen KC (2004) Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J Geophys Res 109:A07211. 10.1029/2003JA010367 DOI: 10.1029/2003JA010367
Ma YJ et al (2015) MHD model results of solar wind interaction with mars and comparison with MAVEN plasma observations. Geophys Res Lett 42:9113–9120. 10.1002/2015GL065218 DOI: 10.1002/2015GL065218
Ma YJ et al (2017) Variations of the Martian plasma environment during the ICME passage on 8 March 2015: a time-dependent MHD study. J Geophys Res Space Phys 122:1714–1730. 10.1002/2016JA023402 DOI: 10.1002/2016JA023402
Mahaffy PR, Webster CR, Stern JC et al (2015) The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347:412–414. 10.1126/science.1260291 DOI: 10.1126/science.1260291
Malin MC, Bell JF III, Cantor BA, Caplinger MA, Calvin WM, Clancy RT, Edgett KS, Edwards L, Haberle RM, James PB, Lee SW, Ravine MA, Thomas PC, Wolff MJ (2007) Context camera investigation on board the Mars reconnaissance orbiter. J Geophys Res 112:E05S04. 10.1029/2006JE002808 DOI: 10.1029/2006JE002808
Malin MC, Harrison TN, Edgett KS (2009) Martian weather activity on short timescales, Malin space science systems captioned image release, MSSS-70, http://www.msss.com/msss_images/2009/02/23/
Maltagliati L, Titov DV, Encrenaz T et al (2008) Observations of atmospheric water vapor above the Tharsis volcanoes on Mars with the OMEGA/MEx imaging spectrometer. Icarus 194:53–64. 10.1016/j.icarus.2007.09.027 DOI: 10.1016/j.icarus.2007.09.027
Maltagliati L, Titov DV, Encrenaz T et al (2011) Annual survey of water vapor behavior from the OMEGA mapping spectrometer onboard Mars Express. Icarus 213:480–495. 10.1016/j.icarus.2011.03.030 DOI: 10.1016/j.icarus.2011.03.030
Masunaga K, Seki K, Brain DA, Fang X, Dong Y, Jakosky BM, McFadden JP, Halekas JS, Connerney JEP (2016) O+ ion beams reflected below the Martian bow shock: MAVEN observations. J Geophys Res Space Phys 121:3093–3107. 10.1002/2016JA022465 DOI: 10.1002/2016JA022465
Masunaga K et al (2017) Statistical analysis of the reflection of incident O+ pickup ions at Mars: MAVEN observations. J Geophys Res Space Phys 122:4089–4101. 10.1002/2016JA023516 DOI: 10.1002/2016JA023516
Masunaga K, Yoshioka K, Chaffin MS, Deighan J, Jain SK, Schneider NM et al (2020) Martian oxygen and hydrogen upper atmospheres responding to solar and dust storm drivers: Hisaki space telescope observations. J Geophys Res Planets 125:e2020JE006500. 10.1029/2020JE006500 DOI: 10.1029/2020JE006500
Masursky H (1973) An overview of geological results from Mariner 9. J Geophys Res 78(20):4009–4030 DOI: 10.1029/JB078i020p04009
Mathew KJ, Marti K (2001) Early evolution of Martian volatiles’ nitrogen and noble gas components in ALH84001 and Chassigny. J Geophys Res 106:1401–1422 DOI: 10.1029/2000JE001255
Matsuoka A et al (2018) The ARASE (ERG) magnetic field investigation. Earth Planets Space 70:43. 10.1186/s40623-018-0800-1 DOI: 10.1186/s40623-018-0800-1
McCubbin FM, Boyce JW, Srinivasan P et al (2016) Heterogeneous distribution of H2O in the Martian interior: implications for the abundance of H2O in depleted and enriched mantle sources. Meteoritics Planet Sci 51:2036–2060. 10.1111/maps.12639 DOI: 10.1111/maps.12639
McFadden JP et al (2015) MAVEN SupraThermal and thermal ion composition (STATIC) instrument. Space Sci Rev. 10.1007/s11214-015-0175-6 DOI: 10.1007/s11214-015-0175-6
McSween HY Jr (2015) Petrology on Mars. Am Miner 100:2380–2395. 10.2138/am-2015-5257 DOI: 10.2138/am-2015-5257
McSween Jr HY, McLennan SM (2014) 2.10 Mars. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd ed, Elsevier Science, pp 251–300. https://doi.org/10.1016/B978-0-08-095975-7.00125-X
Melchiorri R, Encrenaz T, Drossart P et al (2009) OMEGA/Mars Express: South Pole Region, water vapor daily variability. Icarus 201:102–112. 10.1016/j.icarus.2008.12.018 DOI: 10.1016/j.icarus.2008.12.018
Mischna MA, Baker V, Milliken R et al (2013) Effects of obliquity and water vapor/trace gas greenhouses in the early Martian climate. J Geophys Res Planets 118:560–576. 10.1002/jgre.20054 DOI: 10.1002/jgre.20054
Mitrofanov I, Malakhov A, Bakhtin B, Golovin D, Kozyrev A, Litvak M, Mokrousov M, Sanin A, Tretyakov V, Vostrukhin A, Anikin A, Zelenyi LM, Semkova J, Malchev S, Tomov B, Matviichuk Y, Dimitrov P, Koleva R, Dachev T, Krastev K, Shvetsov V, Timoshenko G, Bobrovnitsky Y, Tomilina T, Benghin V, Shurshakov V (2018) Fine resolution epithermal neutron detector (FREND) onboard the ExoMars trace gas orbiter. Space Sci Rev 214:86. 10.1007/s11214-018-0522-5 DOI: 10.1007/s11214-018-0522-5
Mittlefehldt DW (1994) ALH84001, a cumulate orthopyroxenite member of the Martian meteorite clan. Meteoritics 29:214–221. 10.1111/j.1945-5100.1994.tb00673.x DOI: 10.1111/j.1945-5100.1994.tb00673.x
Modolo R et al (2016) Mars-solar wind interaction: LatHyS, an improved parallel 3-D multispecies hybrid model. J Geophys Res Space Phys 121:6378–6399. 10.1002/2015JA022324 DOI: 10.1002/2015JA022324
Montabone L, Spiga A, Kass DM et al (2020) Martian year 34 column dust climatology from Mars climate sounder observations: reconstructed maps and model simulations. J Geophys Res Planets. 10.1029/2019je006111 DOI: 10.1029/2019je006111
Montmessin F, Korablev O, Lefèvre F et al (2017) SPICAM on Mars Express: a 10 year in-depth survey of the Martian atmosphere. Icarus 297:195–216. 10.1016/j.icarus.2017.06.022 DOI: 10.1016/j.icarus.2017.06.022
Mouginot J, Pommerol A, Beck P, Kofman W, Clifford SM (2012) Dielectric map of the Martian northern hemisphere and the nature of plain filling materials. Geophys Res Lett 39:L02202. 10.1029/2011GL050286 DOI: 10.1029/2011GL050286
Murchie S, Erard S (1996) Spectral properties and heterogeneity of Phobos from measurements by Phobos 2. Icarus 123:63–86. 10.1006/icar.1996.0142 DOI: 10.1006/icar.1996.0142
Nakada R, Usui T, Ushioda M, Takahashi Y (2020) Vanadium micro-XANES determination of oxygen fugacity in olivine-hosted glass inclusion and groundmass glasses of Martian primitive basalt Yamato 980459. Am Miner 105(11):1695–1703. 10.2138/am-2020-7321 DOI: 10.2138/am-2020-7321
Nakagawa H (2019) Atmosphere of Mars. In: Yamagishi A, Kakegawa T, Usui T (eds) Astrobiology. Springer, Heidelberg, p 353 DOI: 10.1007/978-981-13-3639-3_22
Navarro T, Madeleine J, Forget F et al (2014) Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J Geophys Res Planets 119:1479–1495. 10.1002/2013JE004550.Received DOI: 10.1002/2013JE004550.Received
Nayak M, Nimmo F, Udrea B (2016) Effects of mass transfer between Martian satellites on surface geology. Icarus 267:220–231. 10.1016/j.icarus.2015.12.026 DOI: 10.1016/j.icarus.2015.12.026
Neary L, Daerden F, Aoki S et al (2020) Explanation for the increase in high-altitude water on Mars observed by NOMAD during the 2018 global dust storm. Geophys Res Lett 47:1–9. 10.1029/2019GL084354 DOI: 10.1029/2019GL084354
Neukum G, Jaumann R, The HRSC Co-Investigator and Experiment Team (2004) HRSC: the high resolution stereo camera of Mars Express. In: Wilson A (ed) Mars Express: a European Mission to the Red Planet (ESA SP-1240) ISBN 92-9092-556-6, ISSN 0379-6566, ESA Publications Division Scientific
Neumann GA, Rowlands DD, Lemoine FG, Smith DE, Zuber MT (2001) Crossover analysis of Mars orbiter laser altimeter data. J Geophys Res 106(E10):23753–23768. 10.1029/2000JE001381 DOI: 10.1029/2000JE001381
Neumann GA, Smith DE, Zuber MT (2003) Two Mars years of clouds detected by the Mars Orbiter Laser Altimeter. J Geophys Res 108(E4):5023. 10.1029/2002JE001849 DOI: 10.1029/2002JE001849
Niles PB, Leshin LA, Guan Y (2005) Microscale carbon isotope variability in ALH84001 carbonates and a discussion of possible formation environments. Geochim Cosmochim Acta 69:2931–2944. 10.1016/j.gca.2004.12.012 DOI: 10.1016/j.gca.2004.12.012
Nilsson H et al (2010) Ion escape from mars as a function of solar wind conditions: a statistical study. Icarus 206:40–49 DOI: 10.1016/j.icarus.2009.03.006
Nilsson H et al (2011) Heavy ion escape from mars, influence from solar wind conditions, and magnetic fields. Icarus 215:475–484 DOI: 10.1016/j.icarus.2011.08.003
Nilsson H, Stenberg G, Futaana Y et al (2012) Ion distributions in the vicinity of Mars: signatures of heating and acceleration processes. Earth Planets Space 64:135–148. 10.5047/eps.2011.04.011 DOI: 10.5047/eps.2011.04.011
Nyquist LE, Bogard DD, Shih C-Y, Greshake A, Stöffler D, Eugster O (2001) Ages and geologic histories of Martian meteorites. Space Sci Rev 96:105–164. 10.1023/A:1011993105172 DOI: 10.1023/A:1011993105172
Nyquist LE, Shih C-Y, McCubbin FM et al (2016) Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034. Meteorit Planet Sci 51:483–498. 10.1111/maps.12606 DOI: 10.1111/maps.12606
Ogohara K, Satomura T (2011) Numerical simulations of the regional characteristics of dust transport on Mars. Adv Space Res 48:1279–1294. 10.1016/j.asr.2011.06.008 DOI: 10.1016/j.asr.2011.06.008
Orofino V, Alemanno G, di Achille G, Mancarella F (2018) Estimate of the water flow duration in large Martian fluvial systems. Planet Space Sci 163:83–96. 10.1016/j.pss.2018.06.001 DOI: 10.1016/j.pss.2018.06.001
Owen T, Maillard JP, Bergh C, Lutz BL (1988) Deuterium on Mars: the abundance of HDO and the value of D/H. Science 240:1767–1770. 10.1126/science.240.4860.1767 DOI: 10.1126/science.240.4860.1767
Pepin RO (1991) On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92:2–79 DOI: 10.1016/0019-1035(91)90036-S
Pollack JB, Kasting JF, Richardson SM, Poliakoff K (1987) The case for a wet, warm climate on early Mars. Icarus 71(2):203–224. 10.1016/0019-1035(87)90147-3 DOI: 10.1016/0019-1035(87)90147-3
Postawko SE, Kuhn WR (1986) Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate. J Geophys Res Solid Earth 91:431–438. 10.1029/jb091ib04p0d431 DOI: 10.1029/jb091ib04p0d431
Pottier A, Forget F, Montmessin F et al (2017) Unraveling the Martian water cycle with high-resolution global climate simulations. Icarus 291:82–106. 10.1016/j.icarus.2017.02.016 DOI: 10.1016/j.icarus.2017.02.016
Rafkin SCR, Magdalena MRV, Michaels TI (2002) Simulation of the atmospheric thermal circulation of a Martian volcano using a mesoscale numerical model. Nature 419:697–699. 10.1038/nature01114 DOI: 10.1038/nature01114
Rahmati A et al (2017) MAVEN measured oxygen and hydrogen pickup ions: probing the Martian exosphere and neutral escape. J Geophys Res Space Phys. 10.1002/2016JA023371 DOI: 10.1002/2016JA023371
Rahmati A, Larson DE, Cravens TE, Lillis RJ, Halekas JS, McFadden JP et al (2018) Seasonal variability of neutral escape from Mars as derived from MAVEN pickup ion observations. J Geophys Res Planets. 10.1029/2018JE005560 DOI: 10.1029/2018JE005560
Ramirez RM (2017) A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus 297:71–82. 10.1016/j.icarus.2017.06.025 DOI: 10.1016/j.icarus.2017.06.025
Ramirez RM, Craddock RA (2018) The geological and climatological case for a warmer and wetter early Mars. Nat Geosci 11:230–237 DOI: 10.1038/s41561-018-0093-9
Ramirez RM, Kasting JF (2017) Could cirrus clouds have warmed early Mars? Icarus 281:248–261. 10.1016/j.icarus.2016.08.016 DOI: 10.1016/j.icarus.2016.08.016
Ramirez RM, Kopparapu R, Zugger ME et al (2014) Warming early Mars with CO2 and H2. Nat Geosci 7:59–63. 10.1038/ngeo2000 DOI: 10.1038/ngeo2000
Ramirez RM, Craddock RA, Usui T (2020) Climate simulations of early Mars with estimated precipitation, runoff, and erosion rates. J Geophys Res Planets. 10.1029/2019JE006160 DOI: 10.1029/2019JE006160
Ramsley KR, Head JW III (2013) Mars impact ejecta in the regolith of Phobos: bulk concentration and distribution. Planet Space Sci 87:115–129. 10.1016/j.pss.2013.09.005 DOI: 10.1016/j.pss.2013.09.005
Ramstad R, Barabash S, Futaana Y, Nilsson H, Wang X-D, Holmström M (2015) The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations. J Geophys Res Planets 120:1298–1309. 10.1002/2015JE004816 DOI: 10.1002/2015JE004816
Ramstad R, Barabash S, Futaana Y, Nilsson H, Holmström M (2017) Global Mars-solar wind coupling and ion escape. J Geophys Res Space Phys 122:8051–8062. 10.1002/2017JA024306 DOI: 10.1002/2017JA024306
Ramstad R, Barabash S, Futaana Y, Nilsson H, Holmström M (2018) Ion escape from Mars through time: an extrapolation of atmospheric loss based on 10 years of Mars Express measurements. J Geophys Res Planets 123:3051–3060. 10.1029/2018JE005727ExpressMeasurements DOI: 10.1029/2018JE005727ExpressMeasurements
Rosenblatt P, Charnoz S, Dunseath KM et al (2016) Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. Nat Geosci 9:581–583. 10.1038/ngeo2742 DOI: 10.1038/ngeo2742
Ruhunusiri S et al (2016) MAVEN observations of partially developed Kelvin-Helmholtz vortices at Mars. Geophys Res Lett. 10.1002/2016GL068926 DOI: 10.1002/2016GL068926
Saito Y et al (2010) In-flight performance and initial results of plasma energy angle and composition experiment (PACE) on SELENE (Kaguya). Space Sci Rev 154(1–4):265–303. 10.1007/s11214-010-9647-x DOI: 10.1007/s11214-010-9647-x
Saito Y et al (2020) Pre-flight calibration and near-earth commissioning results of the mercury plasma particle experiment (MPPE) onboard MMO (Mio). Space Sci Rev (accepted).
Sakai S, Seki K, Terada N, Shinagawa H, Tanaka T, Ebihara Y (2018) Effects of a weak intrinsic magnetic field on atmospheric escape from Mars. Geophys Res Lett 45:9336–9343. 10.1029/2018GL079972 DOI: 10.1029/2018GL079972
Sakata R, Seki K, Sakai S, Terada N, Shinagawa H, Tanaka T (2020) Effects of an intrinsic magnetic field on ion loss from ancient Mars based on multispecies MHD simulations. J Geophys Res Space Phys 125:e2019JA026945. 10.1029/2019JA026945 DOI: 10.1029/2019JA026945
Sánchez-Lavega A, Chen-Chen H, Ordoñez-Etxeberria I et al (2018) Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express. Icarus 299:194–205. 10.1016/j.icarus.2017.07.026 DOI: 10.1016/j.icarus.2017.07.026
Savijärvi H, McConnochie TH, Harri A-M, Paton M (2019) Annual and diurnal water vapor cycles at Curiosity from observations and column modeling. Icarus 319:485–490 DOI: 10.1016/j.icarus.2018.10.008
Schneider NM, Deighan JI, Jain SK et al (2015) Discovery of diffuse aurora on Mars. Science 350:1–6. 10.1126/science.aad0313 DOI: 10.1126/science.aad0313
Segura TL, Toon OB, Colaprete A, Zahnle K (2002) Environmental effects of large impacts on Mars. Science 298:1977–1980. 10.1126/science.1073586 DOI: 10.1126/science.1073586
Segura TL, Toon OB, Colaprete A (2008) Modeling the environmental effects of moderate-sized impacts on Mars. J Geophys Res Planets. 10.1029/2008JE003147 DOI: 10.1029/2008JE003147
Sharaf O, Amiri S, AlDhafri S et al (2020) Sending hope to Mars. Nat Astron 4:722. 10.1038/s41550-020-1151-y DOI: 10.1038/s41550-020-1151-y
Shaposhnikov DS, Medvedev AS, Rodin AV, Hartogh P (2019) Seasonal water “pump” in the atmosphere of Mars: vertical transport to the thermosphere. Geophys Res Lett 46:4161–4169. 10.1029/2019GL082839 DOI: 10.1029/2019GL082839
Shizgal BD, Arkos GG (1996) Nonthermal escape of the atmospheres of Venus, Earth, and Mars. Rev Geophys 34(4):483–505. 10.1029/96RG02213 DOI: 10.1029/96RG02213
Shearer CK, McKay G, Papike JJ, Karner JM (2006) Valence state partitioning of vanadium between olivine-liquid: estimates of the oxygen fugacity of Y980459 and application to other olivine-phyric Martian basalts. Am Miner 91(10):1657–1663 DOI: 10.2138/am.2006.2155
Smith MD (2002) The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer. J Geophys Res 107:1–19. 10.1029/2001JE001522 DOI: 10.1029/2001JE001522
Smith MD (2004) Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167:148–165. 10.1016/j.icarus.2003.09.010 DOI: 10.1016/j.icarus.2003.09.010
Smith DE, Zuber MT, Frey HV, Garvin JB, Head JW, Muhleman DO, Pettengill GH, Phillips RJ, Solomon SC, Jay Zwally H, Bruce Banerdt W, Duxbury TC, Golombek MP, Lemoine FG, Neumann GA, Rowlands DD, Aharonson O, Ford PG, Ivanov AB, Johnson CL, McGovern PJ, Abshire JB, Afzal RS, Sun X (2001) Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J Geophys Res Planets 106(E10):23689–23722. 10.1029/2000JE001364 DOI: 10.1029/2000JE001364
Spanovich N, Smith M, Smith P et al (2006) Surface and near-surface atmospheric temperatures for the Mars Exploration Rover landing sites. Icarus 180:314–320. 10.1016/j.icarus.2005.09.014 DOI: 10.1016/j.icarus.2005.09.014
Spiga A, Forget F (2009) A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J Geophys Res 114:1–26. 10.1029/2008JE003242 DOI: 10.1029/2008JE003242
Spiga A, Faure J, Madeleine J-B et al (2013) Rocket dust storms and detached dust layers in the Martian atmosphere. J Geophys Res Planets 118:746–767. 10.1002/jgre.20046 DOI: 10.1002/jgre.20046
Steakley K, Murphy J, Kahre M et al (2019) Testing the impact heating hypothesis for early Mars with a 3-D global climate model. Icarus 330:169–188. 10.1016/j.icarus.2019.04.005 DOI: 10.1016/j.icarus.2019.04.005
Stenberg G, Nilsson H, Futaana Y, Barabash S, Fedorov A, Brain D (2011) Observational evidence of alpha particle capture at Mars. Geophys Res Lett 38:L09101. 10.1029/2011GL047155 DOI: 10.1029/2011GL047155
Stephant A, Garvie LAJ, Mane P, Hervig R, Wadhwa M (2018) Terrestrial exposure of a fresh Martian meteorite causes rapid changes in hydrogen isotopes and water concentrations. Sci Rep 8:12385. 10.1038/s41598-018-30807-w DOI: 10.1038/s41598-018-30807-w
Stern JC, Sutter B, Freissinet C et al (2015) Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. PNAS 112:4245–4250. 10.1073/pnas.1420932112 DOI: 10.1073/pnas.1420932112
Stone SW, Yelle RV, Benna M et al (2020) Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science 370:824–831. 10.1126/science.aba5229 DOI: 10.1126/science.aba5229
Sugiura N, Hoshino H (2000) Hydrogen-isotopic compositions in Allan Hills 84001 and the evolution of the Martian atmosphere. Meteorit Planet Sci 35:373–380. 10.1111/j.1945-5100.2000.tb01783.x DOI: 10.1111/j.1945-5100.2000.tb01783.x
Terada N et al (2009) Atmosphere and water loss from early mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9:1. 10.1089/ast.2008.0250 DOI: 10.1089/ast.2008.0250
Thomas N, Cremonese G, Ziethe R, Gerber M, Brändli M, Bruno G, Erismann M, Gambicorti L, Gerber T, Ghose K, Gruber M, Gubler P, Mischler H, Jost J, Piazza D, Pommerol A, Rieder M, Roloff V, Servonet A, Trottmann W, Uthaicharoenpong T, Zimmermann C, Vernani D, Johnson M, Pelò E, Weigel T, Viertl J, Roux ND, Lochmatter P, Sutter G, Casciello A, Hausner T, Veltroni IF, Deppo VD, Orleanski P, Nowosielski W, Zawistowski T, Szalai S, Sodor B, Tulyakov S, Troznai G, Banaskiewicz M, Bridges JC, Byrne S, Debei S, El-Maarry MR, Hauber E, Hansen CJ, Ivanov A, Keszthelyi L, Kirk R, Kuzmin R, Mangold N, Marinangeli L, Markiewicz WJ, Massironi M, McEwen AS, Okubo C, Tornabene LL, Wajer P, Wray JJ (2017) The colour and stereo surface imaging system (CaSSIS) for the ExoMars trace gas orbiter. Space Sci Rev 212:1897–1944. 10.1007/s11214-017-0421-1 DOI: 10.1007/s11214-017-0421-1
Tian F, Claire MW, Haqq-Misra JD, Smith M, Crisp DC, Catling D, Zahnle K, Kasting JF (2010) Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Planet Sci Lett 295(3–4):412–418 DOI: 10.1016/j.epsl.2010.04.016
Titov DV (2002) Water vapour in the atmosphere of Mars. Adv Space Res 29:183–191. 10.1016/S0273-1177(01)00568-3 DOI: 10.1016/S0273-1177(01)00568-3
Trokhimovskiy A, Fedorova A, Korablev O et al (2015) Mars’ water vapor mapping by the SPICAM IR spectrometer: five martian years of observations. Icarus 251:50–64. 10.1016/j.icarus.2014.10.007 DOI: 10.1016/j.icarus.2014.10.007
Trotignon JG, Mazelle C, Bertucci C, Acuña MH (2006) Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets. Planet Space Sci 54(4):357–369. 10.1016/j.pss.2006.01.003 DOI: 10.1016/j.pss.2006.01.003
Tsunakawa H, Shibuya H, Takahashi F, Shimizu H, Matsushima M, Matsuoka A, Nakazawa S, Otake H, Iijima Y (2010) Lunar magnetic field observation and initial global mapping of lunar magnetic anomalies by MAP-LMAG onboard SELENE (Kaguya). Space Sci Rev 154:219–251. 10.1007/s11214-010-9652-0 DOI: 10.1007/s11214-010-9652-0
Turbet M, Tran H, Pirali O, Forget F, Boulet C, Hartmann JM (2019) Far infrared measurements of absorptions by CH4+CO2 and H2+CO2 mixtures and implications for greenhouse warming on early Mars. Icarus 321:189–199 DOI: 10.1016/j.icarus.2018.11.021
Turbet M, Gillmann C, Forget F, Baudin B, Palumbo A, Head J, Karatekin O (2020a) The environmental effects of very large bolide impacts on early Mars explored with a hierarchy of numerical models. Icarus 335:113419 DOI: 10.1016/j.icarus.2019.113419
Turbet M, Boulet C, Karman T (2020b) Measurements and semi-empirical calculations of CO2+CH4 and CO2+H2 collision-induced absorption across a wide range of wavelengths and temperatures. Application for the prediction of early Mars surface temperature. Icarus 346:113762. 10.1016/j.icarus.2020.113762 DOI: 10.1016/j.icarus.2020.113762
Urata RA, Toon OB (2013) Simulations of the martian hydrologic cycle with a general circulation model: Implications for the ancient martian climate. Icarus 226:229–250. 10.1016/j.icarus.2013.05.014 DOI: 10.1016/j.icarus.2013.05.014
Usui T, Alexander CM, Wang J, Simon JI, Jones JH (2012) Origin of water and mantle–crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth Planet Sci Lett 357–358:119–129. 10.1016/j.epsl.2012.09.008 DOI: 10.1016/j.epsl.2012.09.008
Usui T, Alexander CM, Wang J, Simon JI, Jones JH (2015) Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth Planet Sci Lett 410:140–151. 10.1016/j.epsl.2014.11.022 DOI: 10.1016/j.epsl.2014.11.022
Usui T (2019a) What geology and mineralogy tell us about water on Mars. In: Yamagishi A, Kakegawa T, Usui T (eds) Astrobiology. Springer, Heidelberg, p 345 DOI: 10.1007/978-981-13-3639-3_21
Usui T (2019b) Hydrogen reservoirs in Mars as revealed by Martian meteorites. In: Filiberto J, Schwenzer SP (ed) Volatiles in the Martian crust, Elsevier, pp 71–88. https://doi.org/10.1016/B978-0-12-804191-8.00004-0
Usui T, Bajo K, Fujiya W et al (2020) The importance of phobos sample return for understanding the Mars-Moon System. Space Sci Rev 216:49. 10.1007/s11214-020-00668-9 DOI: 10.1007/s11214-020-00668-9
Vago J, Witasse O, Svedhem H, Baglioni P, Haldemann A, Gianfiglio G, Blancquaert T, McCoy D, de Groot R (2015) ESA ExoMars Program: the next step in exploring Mars. Sol Syst Res 49(7):518–528. 10.1134/S0038094615070199 DOI: 10.1134/S0038094615070199
Vaisberg O, Smirnov V (1986) The Martian magnetotail. Adv Space Res 6:301–304 DOI: 10.1016/0273-1177(86)90046-3
Vandaele AC, Lopez-Moreno JJ, Patel MR et al (2018) NOMAD, an integrated suite of three spectrometers for the ExoMars trace gas mission: technical description, science objectives and expected performance. Space Sci Rev 214:80. 10.1007/s11214-018-0517-2 DOI: 10.1007/s11214-018-0517-2
Vandaele AC, Korablev O, Daerden F, Aoki S, Thomas IR, Altieri F, Lopez-Valverde M, Villanueva G, Liuzzi G, Smith MD, Erwin J, Trompet L, Fedorova AA, Montmessin F, Trokhimovskiy A, Belyaev D, Ignatiev N, Luginin M, Olsen K, Baggio L, Alday J, Bertaux J-L, Betsis DS, Bolsée D, Clancy R, Cloutis E, Depiesse C, Funke B, Garcia-Comas M, Gérard J-C, Giuranna M, Gonzalez-Galindo G, Grigoriev A, Ivanov Y, Kaminski J, Karatekin O, Lefèvre F, Lewis S, Lopez-Puertas M, Mahieux A, Maslov I, Mason J, Mumma M, Neary L, Neefs E, Patrakeev A, Patsaev D, Ristic B, Robert S, Schmidt F, Shakun A, Teanby N, Viscardy S, Willame Y, Whiteway J, Wilquet V, Wolff M, Bellucci G, Patel M, Lopez-Moreno JJ, Forget F, Wilson C, Svedhem H, Vago J, Rodionov D (2019) Martian dust impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature 568(7753):517–520. 10.1038/s41586-019-1096-4 DOI: 10.1038/s41586-019-1096-4
Vasilyev AV, Mayorov BS, Bibring JP (2009) The retrieval of altitude profiles of the Martian aerosol microphysical characteristics from the limb measurements of the Mars Express OMEGA spectrometer. Sol Syst Res 43:392–404. 10.1134/S0038094609050025 DOI: 10.1134/S0038094609050025
Vincendon M, Pilorget C, Gondet B et al (2011) New near-IR observations of mesospheric CO2 and H2O clouds on Mars. J Geophys Res Planets 116:1–18. 10.1029/2011JE003827 DOI: 10.1029/2011JE003827
Wadhwa M (2001) Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291(5508):1527–1530 DOI: 10.1126/science.1057594
Wang H, Ingersoll AP (2002) Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera. J Geophys Res 107:1–16. 10.1029/2001JE001815 DOI: 10.1029/2001JE001815
Webster CR, Mahaffy PR, Flesch GJ et al (2013) Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 341:260–263. 10.1126/science.1237961 DOI: 10.1126/science.1237961
Wilson RJ, Neumann GA, Smith MD (2007) Diurnal variation and radiative influence of Martian water ice clouds. Geophys Res Lett 34:1–4. 10.1029/2006GL027976 DOI: 10.1029/2006GL027976
Witasse O, Duxbury T, Chicarro A, Altobelli N, Andert T, Aronica A, Barabash S, Bertaux JL, Bibring JP, Cardesin-Moinelo A, Cichetti A, Companys V, Dehant V, Denis M, Formisano V, Futaana Y, Giuranna M, Gondet B, Heather D, Hoffmann H, Holmström M, Manaud N, Martin P, Matz KD, Montmessin F, Morley T, Mueller M, Neukum G, Oberst J, Orosei R, Pätzold M, Picardi G, Pischel R, Plaut JJ, Reberac A, Pardo Voss P, Roatsch T, Rosenblatt P, Remus S, Schmedemann N, Willner K, Zegers T (2014) Mars Express investigations of Phobos and Deimos. Planet Space Sci 102:18–34. 10.1016/j.pss.2013.08.002 DOI: 10.1016/j.pss.2013.08.002
Wong MH, Atreya SK, Mahaffy PN et al (2013) Isotopes of nitrogen on Mars: atmospheric measurements by Curiosity’s mass spectrometer. Geophys Res Lett 40:6033–6037. 10.1002/2013GL057840 DOI: 10.1002/2013GL057840
Wordsworth R, Forget F, Millour E et al (2013) Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution. Icarus 222:1–19. 10.1016/j.icarus.2012.09.036 DOI: 10.1016/j.icarus.2012.09.036
Wordsworth RD, Kerber L, Pierrehumbert RT et al (2015) Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J Geophys Res Planets 120:1201–1219. 10.1002/2015JE004787 DOI: 10.1002/2015JE004787
Wordsworth R, Kalugina Y, Lokshtanov S et al (2017) Transient reducing greenhouse warming on early Mars. Geophys Res Lett 44:665–671. 10.1002/2016GL071766 DOI: 10.1002/2016GL071766
Xu S, Mitchell D, Luhmann J et al (2017) High-altitude closed magnetic loops at Mars observed by MAVEN. Geophys Res Lett 44:11229–11238. 10.1002/2017GL075831 DOI: 10.1002/2017GL075831
Yamauchi M et al (2015) Seasonal variation of Martian pick-up ions: evidence of breathing exosphere. Planet Space Sci 119:54–61 DOI: 10.1016/j.pss.2015.09.013
Yokota S, Saito Y, Asamura K, Mukai T (2005) Development of an ion energy mass spectrometer for application on board three-axis stabilized spacecraft. Rev Sci Instrum 76:014501. 10.1063/1.1834697 DOI: 10.1063/1.1834697
Yokota S, Kasahara S, Mitani T et al (2017) Medium-energy particle experiments–ion mass analyzer (MEP-i) onboard ERG (Arase). Earth Planets Space. 10.1186/s40623-017-0754-8 DOI: 10.1186/s40623-017-0754-8
Yokota S, Terada N, Matsuoka A, Murata N, Saito Y, Delcourt D, Futaana Y, Seki K, Schaible MJ, Asamura K, Kasahara S, Nakagawa H, Nishino MN, Nomura R, Keika K, Harada Y (2021) In situ observations of ions and magnetic field around Phobos: The Mass Spectrum Analyzer (MSA) for the Martian Moons eXploration (MMX) mission. Earth Planets Space. 10.1186/s40623-021-01452-x DOI: 10.1186/s40623-021-01452-x
Zurek RW, Smrekar SE (2007) An overview of the Mars Reconnaissance Orbiter (MRO) science mission. J Geophys Res 112:1–22. 10.1029/2006JE002701 DOI: 10.1029/2006JE002701