Development and characterization of alginate@montmorillonite hybrid microcapsules for encapsulation and controlled release of quercetin: Effect of clay type
[en] In the present study, different organic and hybrid systems for quercetin (Qr) encapsulation were developed, namely Ca-Alginate (Qr-Alg), Ca-Alginate@Na-montmorillonite (Qr-Alg@Na-Mnt), and Ca-Alginate@CPC-montmorillonite (Qr-Alg@CPC-Mnt). Attenuated total reflecting-Fourier-transform infrared (ATR-FTIR) analysis was used to characterize and prove quercetin encapsulation in the developed microcapsules. The encapsulation efficiency (EE) and loading capacity (LC) of quercetin in elaborated biomaterials were determined. Besides, the release kinetics of quercetin molecules from organic and hybrid microcapsules were carefully investigated in two different aqueous mediums; pure distilled water and distilled water containing Tween 20 (1%, w/v). The obtained results show that all developed microcapsules have a good encapsulation efficiency and loading capacity within the range 97.65 ± 0.57–99.47 ± 0.38% for the EE and 19.26 ± 0.46–23.29 ± 0.82 mg/g for the LC. The release rates of Qr from organic microcapsules Qr-Alg, hybrid microcapsules Qr-Alg@Na-Mnt, and Qr-Alg@CPC-Mnt in distilled water containing Tween 20 (1%, w/v) are 52, 49, and 113 times bigger, respectively, than release rate in distilled water. In addition, the kinetics release from hybrid microcapsules was slower in comparison to organic microcapsules. Also, in the case of hybrid microcapsules, the rate of kinetic release of quercetin from Qr-Alg@Na-Mnt was greater than the one from Qr-Alg@CPC-Mnt. This is due to the strong interactions of quercetin molecules with nanoparticle functional groups of cetylpyridinium chloride modified montmorillonite organoclay (CPC-Mnt) compared to sodium montmorillonite (Na-Mnt). The kinetics of Quercetin release from all developed organic and hybrid microcapsules follows the Korsmeyer–Peppas model and is controlled by non-Fickian diffusion.
Disciplines :
Chemistry Food science
Author, co-author :
Essifi, Kamal; Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment (CPSUNAP-LCAE), Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
Brahmi, Mohamed; Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment (CPSUNAP-LCAE), Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
Berraaouan, Doha; Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment (CPSUNAP-LCAE), Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
Amrani, Amina; Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment (CPSUNAP-LCAE), Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
El Bachiri, Ali; Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment (CPSUNAP-LCAE), Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
Fauconnier, Marie-Laure ; Université de Liège - ULiège > Département GxABT ; Université de Liège - ULiège > TERRA Research Centre > Chimie des agro-biosystèmes ; Université de Liège - ULiège > Département GxABT > Chimie des agro-biosystèmes
Tahani, Abdesselam; Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment (CPSUNAP-LCAE), Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
Language :
English
Title :
Development and characterization of alginate@montmorillonite hybrid microcapsules for encapsulation and controlled release of quercetin: Effect of clay type
The authors are sincerely thankful to MESRSFC, CNRST-Morocco, and UMP for their financial support of Project PPR 15-17 and PARA1-2019. The authors are also thankful to Professor Abdelmonaem Talhaoui, Head of the Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco, for managing the Department of analysis.
Van Hecke, E., Benali, M., Solid dispersions of quercetin-PEG matrices: miscibility prediction, preparation and characterization. Food Biosci., 49, 2022, 101868, 10.1016/j.fbio.2022.101868.
Huang, L., Li, M., Wei, H., Yu, Q., Huang, S., Wang, T., Liu, M., Li, P., Research on the indirect antiviral function of medicinal plant ingredient quercetin against grouper iridovirus infection. Fish Shellfish Immunol. 124 (2022), 372–379, 10.1016/j.fsi.2022.04.013.
Cadena-Velandia, Z.G., Montenegro-Alarcón, J.C., Marquínez-Casas, X., Mora-Huertas, C.E., Quercetin-loaded alginate microparticles: a contribution on the particle structure. J. Drug Delivery Sci. Technol., 56, 2020, 101558, 10.1016/j.jddst.2020.101558.
Shi, Z.H., Li, N.G., Tang, Y.P., Shi, Q.P., Zhang, W., Zhang, P.X., Dong, Z.X., Li, W., Zhang, X., Fu, H.A., Duan, J.A., Synthesis, biological evaluation and SAR analysis of O-alkylated analogs of quercetin for anticancer. Bioorg. Med. Chem. Lett. 24 (2014), 4424–4427, 10.1016/j.bmcl.2014.08.006.
Wang, P., Zhang, K., Zhang, Q., Mei, J., Chen, C.J., Feng, Z.Z., Yu, D.H., Effects of quercetin on the apoptosis of the human gastric carcinoma cells. Toxicol. In Vitro 26 (2012), 221–228, 10.1016/j.tiv.2011.11.015.
Mukhopadhyay, P., Maity, S., Mandal, S., Chakraborti, A.S., Prajapati, A.K., Kundu, P.P., Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr. Polym. 182 (2018), 42–51, 10.1016/j.carbpol.2017.10.098.
Choi, H.J., Song, J.H., Park, K.S., Kwon, D.H., Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur. J. Pharm. Sci. 37 (2009), 329–333, 10.1016/j.ejps.2009.03.002.
Thapa, M., Kim, Y., Desper, J., Chang, K.O., Hua, D.H., Synthesis and antiviral activity of substituted quercetins. Bioorg. Med. Chem. Lett. 22 (2012), 353–356, 10.1016/j.bmcl.2011.10.119.
Fan, D., Zhou, X., Zhao, C., Chen, H., Zhao, Y., Gong, X., Anti-inflammatory, antiviral and quantitative study of quercetin-3-O- β-D-glucuronide in Polygonum perfoliatum L. Fitoterapia 82 (2011), 805–810, 10.1016/j.fitote.2011.04.007.
Kleemann, R., Verschuren, L., Morrison, M., Zadelaar, S., van Erk, M.J., Wielinga, P.Y., Kooistra, T., Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 218 (2011), 44–52, 10.1016/j.atherosclerosis.2011.04.023.
Paolillo, R., Romano Carratelli, C., Rizzo, A., Effect of resveratrol and quercetin in experimental infection by Salmonella enterica serovar Typhimurium. Int. Immunopharmacol. 11 (2011), 149–156, 10.1016/j.intimp.2010.10.019.
Plaper, A., Golob, M., Hafner, I., Oblak, M., Šolmajer, T., Jerala, R., Characterization of quercetin binding site on DNA gyrase. Biochem. Biophys. Res. Commun. 306 (2003), 530–536, 10.1016/S0006-291X(03)01006-4.
Wang, W., Waterhouse, G.I.N., Sun-Waterhouse, D., Co-extrusion encapsulation of canola oil with alginate: effect of quercetin addition to oil core and pectin addition to alginate shell on oil stability. Food Res. Int. 54 (2013), 837–851, 10.1016/j.foodres.2013.08.038.
J. Wang, Xi.H. Zhao, Degradation kinetics of fisetin and quercetin in solutions affected by medium pH, temperature and co-existing proteins, Journal of the Serbian Chemical Society. 81 (2016) 243–253. https://doi.org/10.2298/JSC150706092W.
Abraham, M.H., Acree, W.E., On the solubility of quercetin. J. Mol. Liq. 197 (2014), 157–159, 10.1016/j.molliq.2014.05.006.
Liu, L., Tang, Y., Gao, C., Li, Y., Chen, S., Xiong, T., Li, J., Du, M., Gong, Z., Chen, H., Liu, L., Yao, P., Characterization and biodistribution in vivo of quercetin-loaded cationic nanostructured lipid carriers. Colloids Surf. B: Biointerfaces 115 (2014), 125–131.
Serhan, M., Sprowls, M., Jackemeyer, D., Long, M., Perez, I.D., Maret, W., Tao, N., Forzani, E., Total iron measurement in human serum with a smartphone. AIChE Ann. Meeting, Conf. Proc. 2019 (Novem 2019), 2012–2014, 10.1039/x0xx00000x.
Gray, A., Egan, S., Bakalis, S., Zhang, Z., Determination of microcapsule physicochemical, structural, and mechanical properties. Particuology. 24 (2016), 32–43, 10.1016/j.partic.2015.06.002.
Andrade, B., Song, Z., Li, J., Zimmerman, S.C., Cheng, J., Moore, J.S., Harris, K., Katz, J.S., New frontiers for encapsulation in the chemical industry. ACS Appl. Mater. Interfaces 7 (2015), 6359–6368, 10.1021/acsami.5b00484.
Essifi, K., Ed-Daoui, A., Berraaouan, D., Benelmostafa, M., Dahmani, M., Tahani, A., Determination of the mechanical properties of single calcium alginate microbeads loaded gallic acid. Mater. Today:. Proc. 31 (2020), S45–S50, 10.1016/j.matpr.2020.05.747.
Lupo, B., Maestro, A., Porras, M., Gutiérrez, J.M., González, C., Preparation of alginate microspheres by emulsification/internal gelation to encapsulate cocoa polyphenols. Food Hydrocolloids 38 (2014), 56–65, 10.1016/j.foodhyd.2013.11.003.
Essifi, K., Brahmi, M., Berraaouan, D., Ed-Daoui, A., El Bachiri, A., Fauconnier, M.-L., Tahani, A., Fernandez-Sanchez, J.F., Influence of sodium alginate concentration on microcapsules properties foreseeing the protection and controlled release of bioactive substances. J. Chem. 2021 (2021), 1–13, 10.1155/2021/5531479.
Essifi, K., Lakrat, M., Berraaouan, D., Fauconnier, M.L., El Bachiri, A., Tahani, A., Optimization of gallic acid encapsulation in calcium alginate microbeads using Box-Behnken Experimental Design. Polym. Bull. 78 (2021), 5789–5814, 10.1007/s00289-020-03397-9.
Li, J., Kim, S.Y., Chen, X., Park, H.J., Calcium-alginate beads loaded with gallic acid: preparation and characterization. LWT - Food Sci. Technol. 68 (2016), 667–673, 10.1016/j.lwt.2016.01.012.
Aarstad, O., Strand, B.L., Klepp-Andersen, L.M., Skjaìšk-Bræk, G., Analysis of G-block distributions and their impact on gel properties of in vitro epimerized mannuronan. Biomacromolecules 14 (2013), 3409–3416, 10.1021/bm400658k.
Essifi, K., Lakrat, M., Berraaouan, D., Fauconnier, M.-L., El Bachiri, A., Tahani, A., Optimization of gallic acid encapsulation in calcium alginate microbeads using Box-Behnken Experimental Design. Polym. Bull. 78:10 (2021), 5789–5814, 10.1007/s00289-020-03397-9.
Berraaouan, D., Elmiz, M., Salhi, S., Tahani, A., Effect of calcium chloride on rheological behavior of sodium alginate. Adv. Mater. Proc. 2 (2017), 629–633, 10.5185/amp.2017/893.
Ribeiro, M.H.L., Afonso, C., Vila-Real, H.J., Alfaia, A.J., Ferreira, L., Contribution of response surface methodology to the modeling of naringin hydrolysis by naringinase Ca-alginate beads under high pressure. LWT - Food Sci. Technol. 43 (2010), 482–487, 10.1016/j.lwt.2009.09.015.
Shilpa, A., Agrawal, S.S., Ray, A.R., Controlled delivery of drugs from alginate matrix. J. Macromol. Sci. - Polym. Rev. 43 (2003), 187–221, 10.1081/MC-120020160.
Zeeb, B., Saberi, A.H., Weiss, J., McClements, D.J., Formation and characterization of filled hydrogel beads based on calcium alginate: Factors influencing nanoemulsion retention and release. Food Hydrocolloids 50 (2015), 27–36, 10.1016/j.foodhyd.2015.02.041.
Iliescu, R.I., Andronescu, E., Ghitulica, C.D., Voicu, G., Ficai, A., Hoteteu, M., Montmorillonite-alginate nanocomposite as a drug delivery system - incorporation and in vitro release of irinotecan. Int. J. Pharm. 463 (2014), 184–192, 10.1016/j.ijpharm.2013.08.043.
Kevadiya, B.D., Joshi, G.V., Patel, H.A., Ingole, P.G., Mody, H.M., Bajaj, H.C., Montmorillonite-Alginate nanocomposites as a drug delivery system: Intercalation and in vitro release of vitamin B1 and vitamin B 6. J. Biomater. Appl. 25 (2010), 161–177, 10.1177/0885328209344003.
C. Viseras, C. Aguzzi, P. Cerezo, M.C. Bedmar, Biopolymer – clay nanocomposites for controlled drug delivery, 24 (2008). https://doi.org/10.1179/174328408X341708.
Andersson Trojer, M., Nordstierna, L., Nordin, M., Nydén, M., Holmberg, K., Encapsulation of actives for sustained release. PCCP 15 (2013), 17727–17741, 10.1039/c3cp52686k.
McClements, D.J., Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: a review. Adv. Colloid Interface Sci. 253 (2018), 1–22, 10.1016/j.cis.2018.02.002.
McClements, D.J., Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems. Adv. Colloid Interface Sci. 219 (2015), 27–53, 10.1016/j.cis.2015.02.002.
A. Matalanis, O. Grif, D.J. Mcclements, Food Hydrocolloids Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds, 25 (2011). https://doi.org/10.1016/j.foodhyd.2011.04.014.
McClements, D., Particle characteristics and their impact on physicochemical properties of delivery systems. Nanopart.– Micropart.-Based Deliv. Syst., 2014, 79–122, 10.1201/b17280-4.
El Miz, M., Akichoh, H., Berraaouan, D., Salhi, S., Tahani, A., Chemical and physical characterization of Moroccan bentonite taken from Nador (North of Morocco). Am. J. Chem. 2017 (2017), 105–112, 10.5923/j.chemistry.20170704.01.
Essifi, K., Nor, M., Berraaouan, D., Akichouh, E.H., El Bachiri, A., Challioui, A., Tahani, A., Identification and quantification of the adsorption mechanisms of the cationic surfactant the cetylpyridinium chloride on Moroccan Na-montmorillonite, Moroccan. J. Chem. 9 (2021), 142–155, 10.48317/IMIST.PRSM/morjchem-v9i1.18310.
Samaha, D., Shehayeb, R., Kyriacos, S., Modeling and comparison of dissolution profiles of diltiazem modified-release formulations. Dissolut. Technol. 16 (2009), 41–46, 10.14227/DT160209P41.
Ritger, P.L., Peppas, N.A., A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release. 5 (1987), 23–36, 10.1016/0168-3659(87)90034-4.
Qi, Y., Jiang, M., Cui, Y.L., Zhao, L., Zhou, X., Synthesis of quercetin loaded nanoparticles based on alginate for Pb(II) adsorption in aqueous solution. Nanoscale Res. Lett. 10 (2015), 1–9, 10.1186/s11671-015-1117-7.
Wang, X.u., Xie, H., Shi, C., Dziugan, P., Zhao, H., Zhang, B., Fabrication and characterization of gel beads of whey isolate protein–pectin complex for loading quercetin and their digestion release. Gels, 8(1), 2022, 18.
Frenț, O.D., Duteanu, N., Teusdea, A.C., Ciocan, S., Vicaș, L., Jurca, T., Muresan, M., Pallag, A., Ianasi, P., Marian, E., Preparation and characterization of chitosan-alginate microspheres loaded with quercetin. Polymers, 14(3), 2022, 490.
Souza, J.d.L., Chiaregato, C.G., Faez, R., Green composite based on PHB and montmorillonite for KNO3 and NPK delivery system. J. Polym. Environ. 26:2 (2018), 670–679.
Dash, S., Murthy, P.N., Nath, L., Chowdhury, P., Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharma. - Drug Res. 67 (2010), 217–223.