[en] Extensive usage of antibiotics has created an unprecedented scenario of the rapid emergence of many drug-resistant bacteria, which has become an alarming public health concern around the globe. Search for better alternatives that are as efficacious as antibiotics led to the discovery of antimicrobial peptides (AMPs). These small cationic amphiphilic peptides have emerged as a promising option as antimicrobial agents, owing to their multifaceted implications against varied pathogens. Recent years have witnessed tremendous growth in research on AMPs resulting in them being tested in clinical trials of which six got approved for topical application. The relatively less successful outcome has been attributed to the poor cell selectivity shown by most of the naturally occurring AMPs. This drawback needs to be circumvented by identifying strategies to design safe and effective peptides. In the present review, we have emphasized the importance of heptad repeat sequence (leucine and/or phenylalanine zipper motif) as a tool that has shown great promise in remodeling the toxic AMPs to safe antimicrobial agents.
Vikas, Yadav ; Université de Liège - ULiège > GIGA > GIGA Cancer - Cellular and Molecular Epigenetics
Misra, Richa; Department of Zoology, Sri Venkateswara College, University of Delhi, Delhi, India
Language :
English
Title :
A review emphasizing on utility of heptad repeat sequence as a tool to design pharmacologically safe peptide-based antibiotics.
Publication date :
December 2021
Journal title :
Biochimie
ISSN :
0300-9084
eISSN :
1638-6183
Publisher :
Elsevier B.V., France
Volume :
191
Pages :
126-139
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Central Drug Research Institute Kungliga Fysiografiska Sällskapet i Lund
Funding text :
The authors would like to acknowledge and appreciate work done on heptad repeat sequence in AMP by Dr. Jimut Kanti Ghosh lab at CSIR-Central Drug Research Institute, Lucknow, India, which served as a motivation to write this review article. Authors would like to apologize for inadvertently missing out on any relevant study related to the role of heptad-repeat sequence due to lack of space. This review article was written in off hours and on weekends. V.Y. would like to acknowledge grants from the Royal Physiographic Society of Lund, Sweden.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Abdel-Razek, A.S., El-Naggar, M.E., Allam, A., Morsy, O.M., Othman, S.I., Microbial natural products in drug discovery. Processes, 8, 2020, 10.3390/pr8040470 ARTN 470.
Butler, M.S., Paterson, D.L., Antibiotics in the clinical pipeline in October 2019. J. Antibiot. (Tokyo) 73 (2020), 329–364, 10.1038/s41429-020-0291-8.
Yadav, V., Talwar, P., Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: an underestimated truth. Biomed. Pharmacother. 111 (2019), 934–946, 10.1016/j.biopha.2018.12.119.
Lazzaro, B.P., Zasloff, M., Rolff, J., Antimicrobial peptides: application informed by evolution. Science, 368, 2020, 10.1126/science.aau5480.
Fu, H., Cao, Z., Li, M., Wang, S., ACEP: improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding. BMC Genom., 21, 2020, 597, 10.1186/s12864-020-06978-0.
Spohn, R., Daruka, L., Lazar, V., Martins, A., Vidovics, F., Grezal, G., Mehi, O., Kintses, B., Szamel, M., Jangir, P.K., Csorgo, B., Gyorkei, A., Bodi, Z., Farago, A., Bodai, L., Foldesi, I., Kata, D., Maroti, G., Pap, B., Wirth, R., Papp, B., Pal, C., Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun., 10, 2019, 4538, 10.1038/s41467-019-12364-6.
Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D.H., He, Q., The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11 (2019), 3919–3931.
Yang, X., Yousef, A.E., Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World J. Microbiol. Biotechnol., 34, 2018, 57, 10.1007/s11274-018-2437-4.
Chen, C.H., Lu, T.K., Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics, 9, 2020, 10.3390/antibiotics9010024.
Huan, Y., Kong, Q., Mou, H., Yi, H., Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front. Microbiol., 11, 2020, 582779, 10.3389/fmicb.2020.582779.
Kosikowska, P., Lesner, A., Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003-2015). Expert Opin. Ther. Pat. 26 (2016), 689–702, 10.1080/13543776.2016.1176149.
Wang, G., Li, X., Wang, Z., APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44 (2016), D1087–D1093, 10.1093/nar/gkv1278.
Matsuzaki, K., Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta 1788 (2009), 1687–1692, 10.1016/j.bbamem.2008.09.013.
Roncevic, T., Puizina, J., Tossi, A., Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era?. Int. J. Mol. Sci., 20, 2019, 10.3390/ijms20225713.
Wang, J., Dou, X., Song, J., Lyu, Y., Zhu, X., Xu, L., Li, W., Shan, A., Antimicrobial peptides: promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 39 (2019), 831–859, 10.1002/med.21542.
Cardoso, M.H., Orozco, R.Q., Rezende, S.B., Rodrigues, G., Oshiro, K.G.N., Candido, E.S., Franco, O.L., Computer-aided design of antimicrobial peptides: are we generating effective drug candidates?. Front. Microbiol., 10, 2019, 3097, 10.3389/fmicb.2019.03097.
Tripathi, A.K., Kumari, T., Tandon, A., Sayeed, M., Afshan, T., Kathuria, M., Shukla, P.K., Mitra, K., Ghosh, J.K., Selective phenylalanine to proline substitution for improved antimicrobial and anticancer activities of peptides designed on phenylalanine heptad repeat. Acta Biomater. 57 (2017), 170–186, 10.1016/j.actbio.2017.05.007.
Ahmad, A., Asthana, N., Azmi, S., Srivastava, R.M., Pandey, B.K., Yadav, V., Ghosh, J.K., Structure-function study of cathelicidin-derived bovine antimicrobial peptide BMAP-28: design of its cell-selective analogs by amino acid substitutions in the heptad repeat sequences. Biochim. Biophys. Acta 1788 (2009), 2411–2420, 10.1016/j.bbamem.2009.08.021.
Kumar, A., Tripathi, A.K., Kathuria, M., Shree, S., Tripathi, J.K., Purshottam, R.K., Ramachandran, R., Mitra, K., Ghosh, J.K., Single amino acid substitutions at specific positions of the heptad repeat sequence of piscidin-1 yielded novel analogs that show low cytotoxicity and in vitro and in vivo antiendotoxin activity. Antimicrob. Agents Chemother. 60 (2016), 3687–3699, 10.1128/AAC.02341-15.
Srivastava, R.M., Srivastava, S., Singh, M., Bajpai, V.K., Ghosh, J.K., Consequences of alteration in leucine zipper sequence of melittin in its neutralization of lipopolysaccharide-induced proinflammatory response in macrophage cells and interaction with lipopolysaccharide. J. Biol. Chem. 287 (2012), 1980–1995, 10.1074/jbc.M111.302893.
Srivastava, S., Kumar, A., Tripathi, A.K., Tandon, A., Ghosh, J.K., Modulation of anti-endotoxin property of Temporin L by minor amino acid substitution in identified phenylalanine zipper sequence. Biochem. J. 473 (2016), 4045–4062, 10.1042/BCJ20160713.
Tandon, A., Harioudh, M.K., Ishrat, N., Tripathi, A.K., Srivastava, S., Ghosh, J.K., An MD2-derived peptide promotes LPS aggregation, facilitates its internalization in THP-1 cells, and inhibits LPS-induced pro-inflammatory responses. Cell. Mol. Life Sci. 75 (2018), 2431–2446, 10.1007/s00018-017-2735-2.
Landschulz, W.H., Johnson, P.F., McKnight, S.L., The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240 (1988), 1759–1764, 10.1126/science.3289117.
Reitter, J.N., Sergel, T., Morrison, T.G., Mutational analysis of the leucine zipper motif in the Newcastle disease virus fusion protein. J. Virol. 69 (1995), 5995–6004, 10.1128/JVI.69.10.5995-6004.1995.
Carr, C.M., Kim, P.S., A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73 (1993), 823–832, 10.1016/0092-8674(93)90260-w.
van Heeckeren, W.J., Sellers, J.W., Struhl, K., Role of the conserved leucines in the leucine zipper dimerization motif of yeast GCN4. Nucleic Acids Res. 20 (1992), 3721–3724, 10.1093/nar/20.14.3721.
Amoutzias, G.D., Robertson, D.L., Van de Peer, Y., Oliver, S.G., Choose your partners: dimerization in eukaryotic transcription factors. Trends Biochem. Sci. 33 (2008), 220–229, 10.1016/j.tibs.2008.02.002.
Ahmad, A., Rilla, K., Zou, J., Zhang, W., Pyykko, I., Kinnunen, P., Ranjan, S., Enhanced gene expression by a novel designed leucine zipper endosomolytic peptide. Int. J. Pharm., 601, 2021, 120556, 10.1016/j.ijpharm.2021.120556.
Ciani, B., Bjelic, S., Honnappa, S., Jawhari, H., Jaussi, R., Payapilly, A., Jowitt, T., Steinmetz, M.O., Kammerer, R.A., Molecular basis of coiled-coil oligomerization-state specificity. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 19850–19855, 10.1073/pnas.1008502107.
Yadav, S.P., Kundu, B., Ghosh, J.K., Identification and characterization of an amphipathic leucine zipper-like motif in Escherichia coli toxin hemolysin E. Plausible role in the assembly and membrane destabilization. J. Biol. Chem. 278 (2003), 51023–51034, 10.1074/jbc.M310052200.
Baracchi, D., Turillazzi, S., Differences in venom and cuticular peptides in individuals of Apis mellifera (Hymenoptera: apidae) determined by MALDI-TOF MS. J. Insect Physiol. 56 (2010), 366–375, 10.1016/j.jinsphys.2009.11.013.
Terwilliger, T.C., Weissman, L., Eisenberg, D., The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys. J. 37 (1982), 353–361, 10.1016/S0006-3495(82)84683-3.
Lee, G., Bae, H., Anti-inflammatory applications of melittin, a major component of bee venom: detailed mechanism of action and adverse effects. Molecules, 21, 2016, 10.3390/molecules21050616.
Gajski, G., Garaj-Vrhovac, V., Melittin: a lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol. 36 (2013), 697–705, 10.1016/j.etap.2013.06.009.
Dathe, M., Wieprecht, T., Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta 1462 (1999), 71–87, 10.1016/s0005-2736(99)00201-1.
Wade, D., Andreu, D., Mitchell, S.A., Silveira, A.M., Boman, A., Boman, H.G., Merrifield, R.B., Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int. J. Pept. Protein Res. 40 (1992), 429–436, 10.1111/j.1399-3011.1992.tb00321.x.
Blondelle, S.E., Houghten, R.A., Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 30 (1991), 4671–4678, 10.1021/bi00233a006.
Asthana, N., Yadav, S.P., Ghosh, J.K., Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J. Biol. Chem. 279 (2004), 55042–55050, 10.1074/jbc.M408881200.
Huang, Y., Huang, J., Chen, Y., Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1 (2010), 143–152, 10.1007/s13238-010-0004-3.
Pandey, B.K., Ahmad, A., Asthana, N., Azmi, S., Srivastava, R.M., Srivastava, S., Verma, R., Vishwakarma, A.L., Ghosh, J.K., Cell-selective lysis by novel analogues of melittin against human red blood cells and Escherichia coli. Biochemistry 49 (2010), 7920–7929, 10.1021/bi100729m.
Tang, Y.C., Deber, C.M., Hydrophobicity and helicity of membrane-interactive peptides containing peptoid residues. Biopolymers 65 (2002), 254–262, 10.1002/bip.10236.
Tang, Y.C., Deber, C.M., Aqueous solubility and membrane interactions of hydrophobic peptides with peptoid tags. Biopolymers 76 (2004), 110–118, 10.1002/bip.10566.
Zhu, W.L., Song, Y.M., Park, Y., Park, K.H., Yang, S.T., Kim, J.I., Park, I.S., Hahm, K.S., Shin, S.Y., Substitution of the leucine zipper sequence in melittin with peptoid residues affects self-association, cell selectivity, and mode of action. Biochim. Biophys. Acta 1768 (2007), 1506–1517, 10.1016/j.bbamem.2007.03.010.
Kosciuczuk, E.M., Lisowski, P., Jarczak, J., Strzalkowska, N., Jozwik, A., Horbanczuk, J., Krzyzewski, J., Zwierzchowski, L., Bagnicka, E., Cathelicidins: family of antimicrobial peptides. A review. Mol. Biol. Rep. 39 (2012), 10957–10970, 10.1007/s11033-012-1997-x.
Risso, A., Braidot, E., Sordano, M.C., Vianello, A., Macri, F., Skerlavaj, B., Zanetti, M., Gennaro, R., Bernardi, P., BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol. Cell Biol. 22 (2002), 1926–1935, 10.1128/mcb.22.6.1926-1935.2002.
D'Este, F., Oro, D., Boix-Lemonche, G., Tossi, A., Skerlavaj, B., Evaluation of free or anchored antimicrobial peptides as candidates for the prevention of orthopaedic device-related infections. J. Pept. Sci. 23 (2017), 777–789, 10.1002/psc.3026.
Ahmad, A., Azmi, S., Srivastava, R.M., Srivastava, S., Pandey, B.K., Saxena, R., Bajpai, V.K., Ghosh, J.K., Design of nontoxic analogues of cathelicidin-derived bovine antimicrobial peptide BMAP-27: the role of leucine as well as phenylalanine zipper sequences in determining its toxicity. Biochemistry 48 (2009), 10905–10917, 10.1021/bi9009874.
Azmi, S., Verma, N.K., Tripathi, J.K., Srivastava, S., Verma, D.P., Ghosh, J.K., Introduction of Cell-Selectivity in Bovine Cathelicidin BMAP-28 by Exchanging Heptadic Isoleucine with the Adjacent Proline at a Non-heptadic Position. 2020, Peptide Science, 10.1002/pep2.24207 ARTN e24207.
Zeng, X.C., Corzo, G., Hahin, R., Scorpion venom peptides without disulfide bridges. IUBMB Life 57 (2005), 13–21, 10.1080/15216540500058899.
Lee, K., Shin, S.Y., Kim, K., Lim, S.S., Hahm, K.S., Kim, Y., Antibiotic activity and structural analysis of the scorpion-derived antimicrobial peptide IsCT and its analogs. Biochem. Biophys. Res. Commun. 323 (2004), 712–719, 10.1016/j.bbrc.2004.08.144.
Lim, S.S., Kim, Y., Park, Y., Kim, J.I., Park, I.S., Hahm, K.S., Shin, S.Y., The role of the central L- or D-Pro residue on structure and mode of action of a cell-selective alpha-helical IsCT-derived antimicrobial peptide. Biochem. Biophys. Res. Commun. 334 (2005), 1329–1335, 10.1016/j.bbrc.2005.07.029.
de la Salud Bea, R., Petraglia, A.F., Ascuitto, M.R., Buck, Q.M., Antibacterial activity and toxicity of analogs of scorpion venom IsCT peptides. Antibiotics, 6, 2017, 10.3390/antibiotics6030013.
Tripathi, J.K., Kathuria, M., Kumar, A., Mitra, K., Ghosh, J.K., An unprecedented alteration in mode of action of IsCT resulting its translocation into bacterial cytoplasm and inhibition of macromolecular syntheses. Sci. Rep., 5, 2015, 9127, 10.1038/srep09127.
Silphaduang, U., Noga, E.J., Peptide antibiotics in mast cells of fish. Nature 414 (2001), 268–269, 10.1038/35104690.
Lei, Z., Liu, Q., Zhu, Q., Yang, B., Khaliq, H., Sun, A., Qi, Y., Moku, G.K., Su, Y., Wang, J., Cao, J., He, Q., Comparative pharmacokinetics and preliminary pharmacodynamics evaluation of piscidin 1 against PRV and PEDV in rats. Front Chem, 6, 2018, 244, 10.3389/fchem.2018.00244.
Chekmenev, E.Y., Vollmar, B.S., Forseth, K.T., Manion, M.N., Jones, S.M., Wagner, T.J., Endicott, R.M., Kyriss, B.P., Homem, L.M., Pate, M., He, J., Raines, J., Gor'kov, P.L., Brey, W.W., Mitchell, D.J., Auman, A.J., Ellard-Ivey, M.J., Blazyk, J., Cotten, M., Investigating molecular recognition and biological function at interfaces using piscidins, antimicrobial peptides from fish. Biochim. Biophys. Acta 1758 (2006), 1359–1372, 10.1016/j.bbamem.2006.03.034.
Lee, E., Shin, A., Jeong, K.W., Jin, B., Jnawali, H.N., Shin, S., Shin, S.Y., Kim, Y., Role of phenylalanine and valine10 residues in the antimicrobial activity and cytotoxicity of piscidin-1. PloS One, 9, 2014, e114453, 10.1371/journal.pone.0114453.
Kim, J.K., Lee, S.A., Shin, S., Lee, J.Y., Jeong, K.W., Nan, Y.H., Park, Y.S., Shin, S.Y., Kim, Y., Structural flexibility and the positive charges are the key factors in bacterial cell selectivity and membrane penetration of peptoid-substituted analog of Piscidin 1. Biochim. Biophys. Acta 1798 (2010), 1913–1925, 10.1016/j.bbamem.2010.06.026.
Lee, I.H., Zhao, C., Nguyen, T., Menzel, L., Waring, A.J., Sherman, M.A., Lehrer, R.I., Clavaspirin, an antibacterial and haemolytic peptide from Styela clava. J. Pept. Res. 58 (2001), 445–456.
Lee, J.K., Luchian, T., Park, Y., New antimicrobial peptide kills drug-resistant pathogens without detectable resistance. Oncotarget 9 (2018), 15616–15634, 10.18632/oncotarget.24582.
Olson, L. 3rd, Soto, A.M., Knoop, F.C., Conlon, J.M., Pseudin-2: an antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog. Biochem. Biophys. Res. Commun. 288 (2001), 1001–1005, 10.1006/bbrc.2001.5884.
Park, S.C., Kim, J.Y., Jeong, C., Yoo, S., Hahm, K.S., Park, Y., A plausible mode of action of pseudin-2, an antimicrobial peptide from Pseudis paradoxa. Biochim. Biophys. Acta 1808 (2011), 171–182, 10.1016/j.bbamem.2010.08.023.
Abdel-Wahab, Y.H., Power, G.J., Ng, M.T., Flatt, P.R., Conlon, J.M., Insulin-releasing properties of the frog skin peptide pseudin-2 and its [Lys18]-substituted analogue. Biol. Chem. 389 (2008), 143–148, 10.1515/BC.2008.018.
Kang, H.K., Seo, C.H., Luchian, T., Park, Y., Pse-T2, an antimicrobial peptide with high-level, broad-spectrum antimicrobial potency and skin biocompatibility against multidrug-resistant Pseudomonas aeruginosa infection. Antimicrob. Agents Chemother., 62, 2018, 10.1128/AAC.01493-18.
Park, S.C., Kim, H., Kim, J.Y., Kim, H., Cheong, G.W., Lee, J.R., Jang, M.K., Improved cell selectivity of pseudin-2 via substitution in the leucine-zipper motif: in vitro and in vivo antifungal activity. Antibiotics, 9, 2020, 10.3390/antibiotics9120921.
Hayouka, Z., Mortenson, D.E., Kreitler, D.F., Weisblum, B., Forest, K.T., Gellman, S.H., Evidence for phenylalanine zipper-mediated dimerization in the X-ray crystal structure of a magainin 2 analogue. J. Am. Chem. Soc. 135 (2013), 15738–15741, 10.1021/ja409082w.
Javadpour, M.M., Barkley, M.D., Self-assembly of designed antimicrobial peptides in solution and micelles. Biochemistry 36 (1997), 9540–9549, 10.1021/bi961644f.
Simmaco, M., Mignogna, G., Canofeni, S., Miele, R., Mangoni, M.L., Barra, D., Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur. J. Biochem. 242 (1996), 788–792, 10.1111/j.1432-1033.1996.0788r.x.
Rinaldi, A.C., Mangoni, M.L., Rufo, A., Luzi, C., Barra, D., Zhao, H., Kinnunen, P.K., Bozzi, A., Di Giulio, A., Simmaco, M., Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem. J. 368 (2002), 91–100, 10.1042/BJ20020806.
Mangoni, M.L., Rinaldi, A.C., Di Giulio, A., Mignogna, G., Bozzi, A., Barra, D., Simmaco, M., Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur. J. Biochem. 267 (2000), 1447–1454, 10.1046/j.1432-1327.2000.01143.x.
Mikut, R., Ruden, S., Reischl, M., Breitling, F., Volkmer, R., Hilpert, K., Improving short antimicrobial peptides despite elusive rules for activity. Biochim. Biophys. Acta 1858 (2016), 1024–1033, 10.1016/j.bbamem.2015.12.013.
Park, Y., Lee, D.G., Jang, S.H., Woo, E.R., Jeong, H.G., Choi, C.H., Hahm, K.S., A Leu-Lys-rich antimicrobial peptide: activity and mechanism. Biochim. Biophys. Acta 1645 (2003), 172–182, 10.1016/s1570-9639(02)00541-1.
Ahmad, A., Azmi, S., Ghosh, J.K., Studies on the assembly of a leucine zipper antibacterial peptide and its analogs onto mammalian cells and bacteria. Amino Acids 40 (2011), 749–759, 10.1007/s00726-010-0744-7.
Ahmad, A., Yadav, S.P., Asthana, N., Mitra, K., Srivastava, S.P., Ghosh, J.K., Utilization of an amphipathic leucine zipper sequence to design antibacterial peptides with simultaneous modulation of toxic activity against human red blood cells. J. Biol. Chem. 281 (2006), 22029–22038, 10.1074/jbc.M602378200.
Ahmad, A., Azmi, S., Srivastava, S., Kumar, A., Tripathi, J.K., Mishra, N.N., Shukla, P.K., Ghosh, J.K., Design and characterization of short antimicrobial peptides using leucine zipper templates with selectivity towards microorganisms. Amino Acids 46 (2014), 2531–2543, 10.1007/s00726-014-1802-3.
Azmi, S., Srivastava, S., Mishra, N.N., Tripathi, J.K., Shukla, P.K., Ghosh, J.K., Characterization of antimicrobial, cytotoxic, and antiendotoxin properties of short peptides with different hydrophobic amino acids at “a” and “d” positions of a heptad repeat sequence. J. Med. Chem. 56 (2013), 924–939, 10.1021/jm301407k.
Ghosh, P., Bhoumik, A., Saha, S., Mukherjee, S., Azmi, S., Ghosh, J.K., Dungdung, S.R., Spermicidal efficacy of VRP, a synthetic cationic antimicrobial peptide, inducing apoptosis and membrane disruption. J. Cell. Physiol. 233 (2018), 1041–1050, 10.1002/jcp.25958.
Jia, B.Y., Wang, Y.M., Zhang, Y., Wang, Z., Wang, X., Muhammad, I., Kong, L.C., Pei, Z.H., Ma, H.X., Jiang, X.Y., High cell selectivity and bactericidal mechanism of symmetric peptides centered on d-pro-gly pairs. Int. J. Mol. Sci., 21, 2020, 10.3390/ijms21031140.
Pandey, B.K., Srivastava, S., Singh, M., Ghosh, J.K., Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2. Biochem. J. 436 (2011), 609–620, 10.1042/BJ20110056.
Zasloff, M., Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. U. S. A. 84 (1987), 5449–5453, 10.1073/pnas.84.15.5449.
Browne, K., Chakraborty, S., Chen, R., Willcox, M.D., Black, D.S., Walsh, W.R., Kumar, N., A new era of antibiotics: the clinical potential of antimicrobial peptides. Int. J. Mol. Sci., 21, 2020, 10.3390/ijms21197047.
Lehmann, J., Retz, M., Sidhu, S.S., Suttmann, H., Sell, M., Paulsen, F., Harder, J., Unteregger, G., Stockle, M., Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur. Urol. 50 (2006), 141–147, 10.1016/j.eururo.2005.12.043.
Ohsaki, Y., Gazdar, A.F., Chen, H.C., Johnson, B.E., Antitumor activity of magainin analogues against human lung cancer cell lines. Canc. Res. 52 (1992), 3534–3538.
Zairi, A., Tangy, F., Bouassida, K., Hani, K., Dermaseptins and magainins: antimicrobial peptides from frogs' skin-new sources for a promising spermicides microbicides-a mini review. J. Biomed. Biotechnol., 2009, 2009, 452567, 10.1155/2009/452567.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.