[en] The alloy strategy through the A- or X-site is a common method for experimental preparation of high-performance and stable lead-based perovskite solar cells. As one of the important candidates for lead-free and stable photovoltaic absorbers, the inorganic antiperovskite family has recently been reported to exhibit excellent optoelectronic properties. However, the current reports on the design of antiperovskite alloys are rare. In this work, we investigated the previously overlooked electronic property (e.g., conduction band convergence), static dielectric constant, and exciton binding energy in inorganic antiperovskite nitrides by first-principles calculations. Then, we revealed a linear relationship between the tolerance factor and various physical quantities. Guided by the established structure-composition-property relationship in six antiperovskite nitrides X3NA (X2+ = Mg2+, Ca2+, Sr2+; A3- = P3-, As3-, Sb3-, Bi3-), for the first time, we designed a promising antiperovskite alloy Mg3NAs0.5Bi0.5 with a quasi-direct band gap of 1.402 eV. Finally, we made a comprehensive comparison between antiperovskite nitrides and conventional halide perovskites for pointing out the future direction for device applications.
Disciplines :
Physics
Author, co-author :
Zhong, Hongxia ; School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China ; School of Physics and Technology, Wuhan University, Wuhan 430072, China
Feng, Chunbao ; School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Wang, Hai; School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
Han, Dan ; Department of Chemie, Ludwig-Maximilians-Universität München, München 81377, Germany
Yu, Guodong; School of Physics and Technology, Wuhan University, Wuhan 430072, China
Xiong, Wenqi; School of Physics and Technology, Wuhan University, Wuhan 430072, China
Li, Yunhai ; School of Physics and Technology, Wuhan University, Wuhan 430072, China
Yang, Mao ; Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany ; School of Science, Xi'an Polytechnic University, Xi'an 710048, China
Tang, Gang ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Yuan, Shengjun ; School of Physics and Technology, Wuhan University, Wuhan 430072, China
Language :
English
Title :
Structure-Composition-Property Relationships in Antiperovskite Nitrides: Guiding a Rational Alloy Design.
NSCF - National Natural Science Foundation of China
Funding text :
This work is supported by the National Natural Science Foundation of China (Grant Nos. 12104421, 11947218, 11704300, and 11547256) and the Natural Science Foundation of Hubei Province, China (2020CFA041). G.T. acknowledges the support of the Consortium des Équipements de Calcul Intensif (CÉCI), which is funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region. Numerical calculations presented in this paper were performed on a supercomputing system in the Supercomputing Center of Wuhan University.
Kim, J. Y.; Lee, J.-W.; Jung, H. S.; Shin, H.; Park, N.-G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867-7918, 10.1021/acs.chemrev.0c00107
Tiwari, A.; Satpute, N. S.; Mehare, C. M.; Dhoble, S. Challenges, Recent Advances and Improvements for Enhancing the Efficiencies of ABX3-Based PeLEDs (Perovskites Light Emitting Diodes): A Review. J. Alloys Compd. 2020, 850, 156827 10.1016/j.jallcom.2020.156827
Wang, H.; Kim, D. H. Perovskite-Based Photodetectors: Materials and Devices. Chem. Soc. Rev. 2017, 46, 5204-5236, 10.1039/C6CS00896H
Fu, P.; Hu, S.; Tang, J.; Xiao, Z. Material Exploration via Designing Spatial Arrangement of Octahedral Units: A Case Study of Lead Halide Perovskites. Front. Optoelectron. 2021, 14, 252-259, 10.1007/s12200-021-1227-z
Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev210726.pdf (accessed Oct 3, 2020).
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051, 10.1021/ja809598r
Ju, M.-G.; Chen, M.; Zhou, Y.; Dai, J.; Ma, L.; Padture, N. P.; Zeng, X. C. Toward Eco-Friendly and Stable Perovskite Materials for Photovoltaics. Joule 2018, 2, 1231-1241, 10.1016/j.joule.2018.04.026
Li, H.; Wei, Q.; Ning, Z. Toward High Efficiency Tin Perovskite Solar Cells: A Perspective. Appl. Phys. Lett. 2020, 117, 060502 10.1063/5.0014804
Swarnkar, A.; Mir, W. J.; Chakraborty, R.; Jagadeeswararao, M.; Sheikh, T.; Nag, A. Are Chalcogenide Perovskites an Emerging Class of Semiconductors for Optoelectronic Properties and Solar Cell?. Chem. Mater. 2019, 31, 565-575, 10.1021/acs.chemmater.8b04178
Sun, Q.; Yin, W.-J.; Wei, S.-H. Searching for Stable Perovskite Solar Cell Materials Using Materials Genome Techniques and High-Throughput Calculations. J. Mater. Chem. C 2020, 8, 12012-12035, 10.1039/D0TC02231D
Niu, S.; Sarkar, D.; Williams, K.; Zhou, Y.; Li, Y.; Bianco, E.; Huyan, H.; Cronin, S. B.; McConney, M. E.; Haiges, R. et al. Optimal Bandgap in A 2D Ruddlesden-Popper Perovskite Chalcogenide for Single-Junction Solar Cells. Chem. Mater. 2018, 30, 4882-4886, 10.1021/acs.chemmater.8b01707
Gebhardt, J.; Rappe, A. M. Adding to the Perovskite Universe: Inverse-Hybrid Perovskites. ACS Energy Lett. 2017, 2, 2681-2685, 10.1021/acsenergylett.7b00966
Gebhardt, J.; Rappe, A. M. Design of Metal-Halide Inverse-Hybrid Perovskites. J. Phys. Chem. C 2018, 122, 13872-13883, 10.1021/acs.jpcc.8b01008
Heinselman, K. N.; Lany, S.; Perkins, J. D.; Talley, K. R.; Zakutayev, A. Thin Film Synthesis of Semiconductors in the Mg-Sb-N Materials System. Chem. Mater. 2019, 31, 8717-8724, 10.1021/acs.chemmater.9b02380
Dai, J.; Ju, M.-G.; Ma, L.; Zeng, X. C. Bi(Sb)NCa3: Expansion of Perovskite Photovoltaics into All-Inorganic Anti-Perovskite Materials. J. Phys. Chem. C 2019, 123, 6363-6369, 10.1021/acs.jpcc.8b11821
Mochizuki, Y.; Sung, H.-J.; Takahashi, A.; Kumagai, Y.; Oba, F. Theoretical Exploration of Mixed-Anion Antiperovskite Semiconductors M3XN (M = Mg, Ca, Sr, Ba; X = P, As, Sb, Bi). Phys. Rev. Mater. 2020, 4, 044601 10.1103/PhysRevMaterials.4.044601
Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using A Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15-50, 10.1016/0927-0256(96)00008-0
Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758, 10.1103/PhysRevB.59.1758
Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953, 10.1103/PhysRevB.50.17953
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865, 10.1103/PhysRevLett.77.3865
Heyd, J.; Peralta, J. E.; Scuseria, G. E.; Martin, R. L. Energy Band Gaps and Lattice Parameters Evaluated with the Heyd-Scuseria-Ernzerhof Screened Hybrid Functional. J. Chem. Phys. 2005, 123, 174101 10.1063/1.2085170
Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188, 10.1103/PhysRevB.13.5188
Togo, A.; Oba, F.; Tanaka, I. First-Principles Calculations of the Ferroelastic Transition between Rutile-Type and CaCl2-Type SiO2at High Pressures. Phys. Rev. B 2008, 78, 134106 10.1103/PhysRevB.78.134106
Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code. Comput. Phys. Commun. 2021, 267, 108033 10.1016/j.cpc.2021.108033
Liu, Q. J.; Liu, Z. T.; Feng, L. P.; Tian, H. Mechanical, Electronic, Chemical Bonding and Optical Properties of Cubic BaHfO3: First-Principles Calculations. Phys. B 2010, 405, 4032-4039, 10.1016/j.physb.2010.06.051
Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys. 2001, 73, 515, 10.1103/RevModPhys.73.515
Gonze, X.; Lee, C. Dynamical Matrices, Born Effective Charges, Dielectric Permittivity Tensors, and Interatomic Force Constants from Density-Functional Perturbation Theory. Phys. Rev. B 1997, 55, 10355, 10.1103/PhysRevB.55.10355
Ghasemi, S.; Alihosseini, M.; Peymanirad, F.; Jalali, H.; Ketabi, S.; Khoeini, F.; Neek-Amal, M. Electronic, Dielectric, and Optical Properties of Two-Dimensional and Bulk Ice: A Multiscale Simulation Study. Phys. Rev. B 2020, 101, 184202 10.1103/PhysRevB.101.184202
Zhao, X.-G.; Yang, J.-H.; Fu, Y.; Yang, D.; Xu, Q.; Yu, L.; Wei, S.-H.; Zhang, L. Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation. J. Am. Chem. Soc. 2017, 139, 2630-2638, 10.1021/jacs.6b09645
Berger, R. F. Design Principles for the Atomic and Electronic Structure of Halide Perovskite Photovoltaic Materials: Insights from Computation. Chem. Eur. J. 2018, 24, 8708-8716, 10.1002/chem.201706126
Tang, G.; Ghosez, P.; Hong, J. Band-Edge Orbital Engineering of Perovskite Semiconductors for Optoelectronic Applications. J. Phys. Chem. Lett. 2021, 12, 4227-4239, 10.1021/acs.jpclett.0c03816
Tang, G.; Xiao, Z.; Hong, J. Designing Two-Dimensional Properties in Three-Dimensional Halide Perovskites via Orbital Engineering. J. Phys. Chem. Lett. 2019, 10, 6688-6694, 10.1021/acs.jpclett.9b02530
Chi, E.; Kim, W.; Hur, N.; Jung, D. New Mg-Based Antiperovskites PnNMg3(Pn = As, Sb). Solid State Commun. 2002, 121, 309-312, 10.1016/S0038-1098(02)00011-X
Gäbler, F.; Kirchner, M.; Schnelle, W.; Schwarz, U.; Schmitt, M.; Rosner, H.; Niewa, R. (Sr3N)E and (Ba3N)E (E = Sb, Bi): Synthesis, Crystal Structures, and Physical Properties. Z. Anorg. Allg. Chem. 2004, 630, 2292-2298, 10.1002/zaac.200400256
Chern, M. Y.; Vennos, D.; DiSalvo, F. Synthesis, Structure, and Properties of Anti-Perovskite Nitrides Ca3MN, M = P, As, Sb, Bi, Ge, Sn, and Pb. J. Solid State Chem. 1992, 96, 415-425, 10.1016/S0022-4596(05)80276-2
Chae, K.; Son, Y.-W. A New Family of Two-Dimensional Crystals: Open-Framework T3X (T = C, Si, Ge, Sn; X = O, S, Se, Te) Compounds with Tetrahedral Bonding. Nano Lett. 2019, 19, 2694-2699, 10.1021/acs.nanolett.9b00668
Linaburg, M. R.; McClure, E. T.; Majher, J. D.; Woodward, P. M. Cs1-xRbxPbCl3and Cs1-xRbxPbBr3Solid Solutions: Understanding Octahedral Tilting in Lead Halide Perovskites. Chem. Mater. 2017, 29, 3507-3514, 10.1021/acs.chemmater.6b05372
Lee, J.-H.; Bristowe, N. C.; Lee, J. H.; Lee, S.-H.; Bristowe, P. D.; Cheetham, A. K.; Jang, H. M. Resolving the Physical Origin of Octahedral Tilting in Halide Perovskites. Chem. Mater. 2016, 28, 4259-4266, 10.1021/acs.chemmater.6b00968
Ming, W.; Shi, H.; Du, M.-H. Large Dielectric Constant, High Acceptor Density, and Deep Electron Traps in Perovskite Solar Cell Material CsGeI3. J. Mater. Chem. A 2016, 4, 13852-13858, 10.1039/C6TA04685A
Han, D.; Shi, H.; Ming, W.; Zhou, C.; Ma, B.; Saparov, B.; Ma, Y.-Z.; Chen, S.; Du, M.-H. Unraveling Luminescence Mechanisms in Zero-Dimensional Halide Perovskites. J. Mater. Chem. C 2018, 6, 6398-6405, 10.1039/C8TC01291A
Takahashi, A.; Kumagai, Y.; Miyamoto, J.; Mochizuki, Y.; Oba, F. Machine Learning Models for Predicting the Dielectric Constants of Oxides Based on High-Throughput First-Principles Calculations. Phys. Rev. Mater. 2020, 4, 103801 10.1103/PhysRevMaterials.4.103801
Elahmar, M.; Rached, H.; Rached, D.; Khenata, R.; Murtaza, G.; Omran, S. B.; Ahmed, W. Structural, Mechanical, Electronic and Magnetic Properties of a New Series of Quaternary Heusler Alloys CoFeMnZ (Z = Si, As, Sb): a First-Principle Study. J. Magn. Magn. Mater. 2015, 393, 165-174, 10.1016/j.jmmm.2015.05.019
Dalpian, G. M.; Zhao, X.-G.; Kazmerski, L.; Zunger, A. Formation and Composition-Dependent Properties of Alloys of Cubic Halide Perovskites. Chem. Mater. 2019, 31, 2497-2506, 10.1021/acs.chemmater.8b05329
Han, D.; Feng, C.; Du, M.-H.; Zhang, T.; Wang, S.; Tang, G.; Bein, T.; Ebert, H. Design of High-Performance Lead-Free Quaternary Antiperovskites for Photovoltaics via Ion Type Inversion and Anion Ordering. J. Am. Chem. Soc. 2021, 143, 12369-12379, 10.1021/jacs.1c06403
Tan, Y.; Chen, F. W.; Ghosh, A. W. First Principles Study and Empirical Parametrization of Twisted Bilayer MoS2Based on Band-Unfolding. Appl. Phys. Lett. 2016, 109, 101601 10.1063/1.4962438
Blancon, J.-C.; Even, J.; Stoumpos, C. C.; Kanatzidis, M. G.; Mohite, A. D. Semiconductor Physics of Organic-Inorganic 2D Halide Perovskites. Nat. Nanotechnol. 2020, 15, 969-985, 10.1038/s41565-020-00811-1
Ravi, V. K.; Markad, G. B.; Nag, A. Band Edge Energies and Excitonic Transition Probabilities of Colloidal CsPbX3(X = Cl, Br, I) Perovskite Nanocrystals. ACS Energy Lett. 2016, 1, 665-671, 10.1021/acsenergylett.6b00337
Wang, S.; Xiao, W.-b.; Wang, F. Structural, Electronic, and Optical Properties of Cubic Formamidinium Lead Iodide Perovskite: A First-Principles Investigation. RSC Adv. 2020, 10, 32364-32369, 10.1039/D0RA06028C
Yang, Z.; Surrente, A.; Galkowski, K.; Bruyant, N.; Maude, D. K.; Haghighirad, A. A.; Snaith, H. J.; Plochocka, P.; Nicholas, R. J. Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite. J. Phys. Chem. Lett. 2017, 8, 1851-1855, 10.1021/acs.jpclett.7b00524
Faghihnasiri, M.; Izadifard, M.; Ghazi, M. E. DFT Study of Mechanical Properties and Stability of Cubic Methylammonium Lead Halide Perovskites (CH3NH3PbX3, X = I, Br, Cl). J. Phys. Chem. C 2017, 121, 27059-27070, 10.1021/acs.jpcc.7b07129