Large Interferometer For Exoplanets (LIFE): II. Signal simulation, signal extraction, and fundamental exoplanet parameters from single-epoch observations
Dannert, Felix A.; Ottiger, Maurice; Quanz, Sascha P.et al.
Space and Planetary Science; Astronomy and Astrophysics
Abstract :
[en] Context. The Large Interferometer For Exoplanets (LIFE) initiative is developing the science and a technology road map for an ambitious space mission featuring a space-based mid-infrared (MIR) nulling interferometer in order to detect the thermal emission of hundreds of exoplanets and characterize their atmospheres.
Aims. In order to quantify the science potential of such a mission, in particular in the context of technical trade-offs, an instrument simulator is required. In addition, signal extraction algorithms are needed to verify that exoplanet properties (e.g., angular separation and spectral flux) contained in simulated exoplanet data sets can be accurately retrieved.
Methods. We present LIFEsim, a software tool developed for simulating observations of exoplanetary systems with an MIR space-based nulling interferometer. It includes astrophysical noise sources (i.e., stellar leakage and thermal emission from local zodiacal and exozodiacal dust) and offers the flexibility to include instrumental noise terms in the future. Here, we provide some first quantitative limits on instrumental effects that would allow the measurements to remain in the fundamental noise limited regime. We demonstrate updated signal extraction approaches to validating signal-to-noise ratio (S/N) estimates from the simulator. Monte Carlo simulations are used to generate a mock survey of nearby terrestrial exoplanets and determine to which accuracy fundamental planet properties can be retrieved.
Results. LIFEsim provides an accessible way to predict the expected S/N of future observations as a function of various key instrument and target parameters. The S/Ns of the extracted spectra are photon noise dominated, as expected from our current simulations. Signals from multi-planet systems can be reliably extracted. From single-epoch observations in our mock survey of small (R < 1.5 REarth) planets orbiting within the habitable zones of their stars, we find that typical uncertainties in the estimated effective temperature of the exoplanets are ≲10%, for the exoplanet radius ≲20%, and for the separation from the host star ≲2%. Signal-to-noise-ratio values obtained in the signal extraction process deviate by less than 10% from purely photon-counting statistics-based S/Ns.
Conclusions. LIFEsim has been sufficiently well validated so that it can be shared with a broader community interested in quantifying various exoplanet science cases that a future space-based MIR nulling interferometer could address. Reliable signal extraction algorithms exist, and our results underline the power of the MIR wavelength range for deriving fundamental exoplanet properties from single-epoch observations.
Research Center/Unit :
CSL - Centre Spatial de Liège - ULiège
Precision for document type :
Review article
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Dannert, Felix A.
Ottiger, Maurice
Quanz, Sascha P.
Laugier, Romain
Fontanet, Emile
Gheorghe, Adrian
Absil, Olivier ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Dandumont, Colin ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Defrere, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory
Gascón, Carlos
Glauser, Adrian M.
Kammerer, Jens
Lichtenberg, Tim
Linz, Hendrik
Loicq, Jerôme ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Large Interferometer For Exoplanets (LIFE): II. Signal simulation, signal extraction, and fundamental exoplanet parameters from single-epoch observations
This work has been carried out within the framework of the National Centre of Competence in Research PlanetS supported by the Swiss National Science Foundation. S.P.Q. acknowledges the financial support of the
SNSF. TL was supported by the Simons Foundation (SCOL award No. 611576). D.D. and R.L. acknowledge the support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement CoG-866070).
Angel, J. R. P., & Woolf, N. J. 1997, ApJ, 475, 373
Astropy Collaboration (Robitaille, T.P., et al.) 2013, A&A, 558, A33
Astropy Collaboration (Price-Whelan, A.M., et al.) 2018, AJ, 156, 123
Benz, W., Broeg, C., Fortier, A., et al. 2021, Exp. Astron., 51, 109
Bracewell, R. N. 1978, Nature, 274, 780
Cabrera, M. S., McMurtry, C. W., Forrest, W. J., et al. 2019, J. Astron. Telescopes Instrum. Syst., 6, 1
Cockell, C. S., Herbst, T., Léger, A., et al. 2009, Exp. Astron., 23, 435
Cuoco, E., Powell, J., Cavaglià, M., et al. 2020, Mach. Learn.: Sci. Technol., 2, 011002
Dandumont, C., Defrère, D., Kammerer, J., et al. 2020, J. Astron. Telescopes Instrum. Syst., 6, 035004
Defrere, D. 2009, PhD thesis, University of Liege, Belgium
Defrère, D., Absil, O., Den Hartog, R., Hanot, C., & Stark, C. 2010, A&A, 509, A9
Defrère, D., Stark, C., Cahoy, K., & Beerer, I. 2012, in Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, eds. M.C. Clampin, G.G. Fazio, H.A. MacEwen, & J. Oschmann, SPIE Conf. Ser., 8442, 84420M
Den Hartog, R., & Karlsson, A. 2005, The D arwin S im science simulator, Tech. rep., ESA
Draper, D. W., Elias, N.M. II, Noecker, M.C., et al. 2006, AJ, 131, 1822
Ertel, S., Defrère, D., Hinz, P., et al. 2020, AJ, 159, 177
Flasseur, O., Denis, L., Thiébaut, E., & Langlois, M. 2020, A&A, 637, A9
Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1
Gaia Collaboration (Brown, A.G.A., et al.) 2018, A&A, 616, A1
Gáspár, A., Rieke, G. H., Guillard, P., et al. 2020, PASP, 133, 014504
Gaudi, B. S., Seager, S., Mennesson, B., et al. 2020, ArXiv e-prints, [arXiv:2001.06683]
Gebhard, T. D., Bonse, M. J., Quanz, S. P., & Schölkopf, B. 2020, ArXiv e-prints, [arXiv:2010.05591]
Gebhard, T.D., Kilbertus, N., Harry, I., & Schölkopf, B. 2019, Phys. Rev. D, 100
Gheorghe, A., Glauser, A. M., Ergenzinger, K. J., et al. 2020, in Optical and Infrared Interferometry and Imaging VII, ed. A. Mérand, S. Sallum, & P.G. Tuthill, 11446
Glasse, A., Rieke, G. H., Bauwens, E., et al. 2015, PASP, 127, 686
Guyon, O., Mennesson, B., Serabyn, E., & Martin, S. 2013, PASP, 125, 951
Hansen, J. T., Ireland, M. J., & The LIFE Collaboration 2022, A&A, in press https://doi.org/10.1051/0004-6361/43107
Kennedy, G. M., Wyatt, M. C., Bailey, V., et al. 2015, ApJS, 216
Konrad, B. S., Alei, E., Angerhausen, D., et al. 2022, A&A, 664, A23
Laugier, R., Cvetojevic, N., & Martinache, F. 2020, A&A, 642, A202
Lawson, P. R., Lay, O. P., Martin, S. R., et al. 2007, in Techniques and Instrumentation for Detection of Exoplanets III, ed. D. R. Coulter, SPIE Conf. Ser., 6693, 669308
Lay, O. P. 2004, Appl. Opt., 43, 6100
Lay, O. P. 2005, Appl. Opt., 44, 5859
Lay, O. P. 2006, in SPIE Astronomical Telescopes + Instrumentation, eds. J.D. Monnier, M. Schöller, & W.C. Danchi (SPIE), 62681A-14
Lay, O. P., Martin, S. R., & Hunyadi, S. L. 2007, Techniques and Instrumentation for Detection of Exoplanets III, 6693, 66930A
Mayor, M., & Queloz, D. 1995, Nature, 378, 355
Mugnier, L., Thiébaut, E., Belu, A., et al. 2006, EAS Pub. Ser., 22, 69
Mugnier, L. M., Cornia, A., Sauvage, J.-F., et al. 2009, J. Opt. Soc. Am. A, 26, 1326
Paresce, F., & Crane, P., eds. 1997, Science with the VLT Interferometer: Proceedings of the ESO Workshop Held at Garching, Germany, 18-21 June 1996, ESO Astrophysics Symposia (Berlin, Heidelberg: Springer Berlin Heidelberg)
Perido, J., Glenn, J., Day, P., et al. 2020, J. Low Temp. Phys., 199, 696
Quanz, S. P., Ottiger, M., Fontanet, E., et al. 2022, A&A, 664, A21 (Paper I)
Rieke, G. H., Ressler, M. E., Morrison, J. E., et al. 2015, PASP, 127, 665
Roellig, T. L., McMurtry, C., Greene, T., et al. 2020, J. Astron. Telescopes Instrum. Syst., 6
The LUVOIR Team 2019, ArXiv e-prints, [arXiv:1912.06219]
Thiébaut, E., & Mugnier, L. 2005, Proc. Int. Astron. Union, 1, 547