Article (Scientific journals)
Fe-Rich Fossil Vents as Mars Analog Samples: Identification of Extinct Chimneys in Miocene Marine Sediments Using Raman Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy.
Demaret, Lucas; Hutchinson, Ian B; Ingley, Richard et al.
2022In Astrobiology
Peer Reviewed verified by ORBi
 

Files


Full Text
Demaret_Astrobiology_2022.pdf
Publisher postprint (1.81 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Analog sample; Biosignatures; ExoMars; Hydrothermal; Iron crust; Mars 2020; Space and Planetary Science
Abstract :
[en] On Earth, the circulation of Fe-rich fluids in hydrothermal environments leads to characteristic iron mineral deposits, reflecting the pH and redox chemical conditions of the hydrothermal system, and is often associated with chemotroph microorganisms capable of deriving energy from chemical gradients. On Mars, iron-rich hydrothermal sites are considered to be potentially important astrobiological targets for searching evidence of life during exploration missions, such as the Mars 2020 and the ExoMars 2022 missions. In this study, an extinct hydrothermal chimney from the Jaroso hydrothermal system (SE Spain), considered an interesting geodynamic and mineralogical terrestrial analog for Mars, was analyzed using Raman spectroscopy, X-ray diffraction, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The sample consists of a fossil vent in a Miocene shallow-marine sedimentary deposit composed of a marl substrate, an iron-rich chimney pipe, and a central space filled with backfilling deposits and vent condensates. The iron crust is particularly striking due to the combined presence of molecular and morphological indications of a microbial colonization, including mineral microstructures (e.g., stalks, filaments), iron oxyhydroxide phases (altered goethite, ferrihydrite), and organic signatures (carotenoids, organopolymers). The clear identification of pigments by resonance Raman spectroscopy and the preservation of organics in association with iron oxyhydroxides by Raman microimaging demonstrate that the iron crust was indeed colonized by microbial communities. These analyses confirm that Raman spectroscopy is a powerful tool for documenting the habitability of such historical hydrothermal environments. Finally, based on the results obtained, we propose that the ancient iron-rich hydrothermal pipes should be recognized as singular terrestrial Mars analog specimens to support the preparatory work for robotic in situ exploration missions to Mars, as well as during the subsequent interpretation of data returned by those missions.
Disciplines :
Chemistry
Earth sciences & physical geography
Microbiology
Space science, astronomy & astrophysics
Author, co-author :
Demaret, Lucas ;  Université de Liège - ULiège > Molecular Systems (MolSys)
Hutchinson, Ian B;  Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Ingley, Richard;  Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Edwards, Howell G M;  Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Fagel, Nathalie  ;  Université de Liège - ULiège > Geology
Compère, Philippe ;  Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Javaux, Emmanuelle  ;  Université de Liège - ULiège > Astrobiology
Eppe, Gauthier  ;  Université de Liège - ULiège > Molecular Systems (MolSys)
Malherbe, Cédric  ;  Université de Liège - ULiège > Molecular Systems (MolSys) ; Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Language :
English
Title :
Fe-Rich Fossil Vents as Mars Analog Samples: Identification of Extinct Chimneys in Miocene Marine Sediments Using Raman Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy.
Publication date :
14 June 2022
Journal title :
Astrobiology
ISSN :
1531-1074
eISSN :
1557-8070
Publisher :
Mary Ann Liebert Inc, United States
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 08 August 2022

Statistics


Number of views
100 (15 by ULiège)
Number of downloads
5 (4 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi