[en] The inherent skeletal and thermal features to forge polymers by step-growth polymerization are conflicting with any depolymerization strategies via cascade back-biting reactions that necessitate adequate ceiling temperature, spacers, and functionalities to create cyclic compounds. Here, we report the edition of step-growth poly(carbonate-urea)s and poly(carbonate-amide)s that are depolymerized on demand into their native precursor or added-value offspring oxazolidinones, together with a hemiacetal cyclic carbonate. The unprotected in-chain secondary amide or urea functionalities of the polymers trigger their degradation via cascade ring-closing events upon a thermal switch (from 25 to 80 °C) in the presence of an organic base as a catalyst. Although most studies are realized in solution for understanding the deconstruction process, the polymers are also fully degraded in 2 h in neat conditions without any catalyst at 150 °C. At 80 °C, the organic base is required to accelerate the process. On the road to sustainability and circularity, we validate the concept by exploiting monomers designed from waste CO2 and upcycled commodity plastics. Ultimately, these polymers are selectively depolymerized from plastic mixtures composed of commodity poly(ethylene terephthalate) and polycaprolactone, offering new options for recycling plastic waste mixtures while delivering high-value-added chemicals.
Research Center/Unit :
Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Siragusa, Fabiana ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium ; Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Belgium
Demarteau, Jérémy; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Habets, Thomas ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Olazabal, Ion; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Robeyns, Koen ; Université Catholique de Louvain (UCL), Institute of Condensed Matter and Nanosciences, Belgium
Evano, Gwilherm ; Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Belgium
Mereau, Raphael ; University of Bordeaux, CNRS, Institute of Molecular Sciences, Talence, France
Tassaing, Thierry; University of Bordeaux, CNRS, Institute of Molecular Sciences, Talence, France
Grignard, Bruno ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Sardon, Haritz ; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Language :
English
Title :
Unifying Step-Growth Polymerization and On-Demand Cascade Ring-Closure Depolymerization via Polymer Skeletal Editing
Publication date :
01 June 2022
Journal title :
Macromolecules
ISSN :
0024-9297
eISSN :
1520-5835
Publisher :
American Chemical Society
Volume :
55
Issue :
11
Pages :
4637-4646
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen EU - European Union F.R.S.-FNRS - Fonds de la Recherche Scientifique EOS - The Excellence Of Science Program
Funding text :
The authors from ULiege thank the “Fonds National pour la Recherche Scientifique” (F.R.S.-FNRS) and the Fonds Wetenschappelijk Onderzoek–Vlaanderen (FWO) for financial support in the frame of the EOS Project No. O019618F (ID EOS: 30902231). The authors from UPV/EHU thank the Ministry of Spain for the EUR2020-112080 financial support. FNRS is also acknowledged for financing the COSwitch project. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska–Curie Grant Agreement No. 955700. C.D. is FNRS Research Director and thanks FNRS for financial support. 2
Garcia, J. M.; Robertson, M. L. The Future of Plastics Recycling. Science 2017, 358, 870-872, 10.1126/science.aaq0324
Zheng, J.; Suh, S. Strategies to Reduce the Global Carbon Footprint of Plastics. Nat. Clim. Change 2019, 9, 374-378, 10.1038/s41558-019-0459-z
Saxon, D. J.; Gormong, E. A.; Shah, V. M.; Reineke, T. M. Rapid Synthesis of Chemically Recyclable Polycarbonates from Renewable Feedstocks. ACS Macro Lett. 2021, 10, 98-103, 10.1021/acsmacrolett.0c00747
Fagnani, D. E.; Tami, J. L.; Copley, G.; Clemons, M. N.; Getzler, Y. D. Y. L.; McNeil, A. J. 100th Anniversary of Macromolecular Science Viewpoint: Redefining Sustainable Polymers. ACS Macro Lett. 2021, 10, 41-53, 10.1021/acsmacrolett.0c00789
Roy, P. S.; Garnier, G.; Allais, F.; Saito, K. Strategic Approach Towards Plastic Waste Valorization: Challenges and Promising Chemical Upcycling Possibilities. ChemSusChem 2021, 14, 4007-4027, 10.1002/cssc.202100904
Zhao, X.; Boruah, B.; Chin, K. F.; Đokić, M.; Modak, J. M.; Soo, H. S. Upcycling to Sustainably Reuse Plastics. Adv. Mater. 2021, 2100843 10.1002/adma.202100843
Hou, Q.; Zhen, M.; Qian, H.; Nie, Y.; Bai, X.; Xia, T.; Laiq Ur Rehman, M.; Li, Q.; Ju, M. Upcycling and Catalytic Degradation of Plastic Wastes. Cell Rep. Phys. Sci. 2021, 2, 100514 10.1016/j.xcrp.2021.100514
Worch, J. C.; Dove, A. P. 100th Anniversary of Macromolecular Science Viewpoint: Toward Catalytic Chemical Recycling of Waste (and Future) Plastics. ACS Macro Lett. 2020, 9, 1494-1506, 10.1021/acsmacrolett.0c00582
Jehanno, C.; Pérez-Madrigal, M. M.; Demarteau, J.; Sardon, H.; Dove, A. P. Organocatalysis for Depolymerisation. Polym. Chem. 2019, 10, 172-186, 10.1039/c8py01284a
Ellis, L. D.; Rorrer, N. A.; Sullivan, K. P.; Otto, M.; McGeehan, J. E.; Román-Leshkov, Y.; Wierckx, N.; Beckham, G. T. Chemical and Biological Catalysis for Plastics Recycling and Upcycling. Nat. Catal. 2021, 4, 539-556, 10.1038/s41929-021-00648-4
Coates, G. W.; Getzler, Y. D. Y. L. Chemical Recycling to Monomer for an Ideal, Circular Polymer Economy. Nat. Rev. Mater. 2020, 5, 501-516, 10.1038/s41578-020-0190-4
Chen, H.; Wan, K.; Zhang, Y.; Wang, Y. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future. ChemSusChem 2021, 14, 4123-4136, 10.1002/cssc.202100652
Shieh, P.; Zhang, W.; Husted, K. E. L.; Kristufek, S. L.; Xiong, B.; Lundberg, D. J.; Lem, J.; Veysset, D.; Sun, Y.; Nelson, K. A.; Plata, D. L.; Johnson, J. A. Cleavable Comonomers Enable Degradable, Recyclable Thermoset Plastics. Nature 2020, 583, 542-547, 10.1038/s41586-020-2495-2
Shieh, P.; Nguyen, H. V. T.; Johnson, J. A. Tailored Silyl Ether Monomers Enable Backbone-Degradable Polynorbornene-Based Linear, Bottlebrush and Star Copolymers through ROMP. Nat. Chem. 2019, 11, 1124-1132, 10.1038/s41557-019-0352-4
Zhu, J. B.; Watson, E. M.; Tang, J.; Chen, E. Y. X. A Synthetic Polymer System with Repeatable Chemical Recyclability. Science 2018, 360, 398-403, 10.1126/science.aar5498
Christensen, P. R.; Scheuermann, A. M.; Loeffler, K. E.; Helms, B. A. Closed-Loop Recycling of Plastics Enabled by Dynamic Covalent Diketoenamine Bonds. Nat. Chem. 2019, 11, 442-448, 10.1038/s41557-019-0249-2
Vora, N.; Christensen, P. R.; Demarteau, J.; Baral, N. R.; Keasling, J. D.; Helms, B. A.; Scown, C. D. Leveling the Cost and Carbon Footprint of Circular Polymers That Are Chemically Recycled to Monomer. Sci. Adv. 2021, 7, eabf0187 10.1126/sciadv.abf0187
Vollmer, I.; Jenks, M. J. F.; Roelands, M. C. P.; White, R. J.; van Harmelen, T.; de Wild, P.; van der Laan, G. P.; Meirer, F.; Keurentjes, J. T. F.; Weckhuysen, B. M. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem., Int. Ed. 2020, 59, 15402-15423, 10.1002/anie.201915651
Rahimi, A. R.; Garciá, J. M. Chemical Recycling of Waste Plastics for New Materials Production. Nat. Rev. Chem. 2017, 1, 0046, 10.1038/s41570-017-0046
Sardon, H.; Dove, A. P. Plastics Recycling with a Difference: A Novel Plastic with Useful Properties Can Easily Be Recycled Again and Again. Science 2018, 360, 380-381, 10.1126/science.aat4997
Hong, M.; Chen, E. Y. X. Chemically Recyclable Polymers: A Circular Economy Approach to Sustainability. Green Chem. 2017, 19, 3692-3706, 10.1039/c7gc01496a
Jehanno, C.; Demarteau, J.; Mantione, D.; Arno, M. C.; Ruipérez, F.; Hedrick, J. L.; Dove, A. P.; Sardon, H. Selective Chemical Upcycling of Mixed Plastics Guided by a Thermally Stable Organocatalyst. Angew. Chem., Int. Ed. 2021, 60, 6710-6717, 10.1002/anie.202014860
Shi, C.; Li, Z. C.; Caporaso, L.; Cavallo, L.; Falivene, L.; Chen, E. Y. X. Hybrid Monomer Design for Unifying Conflicting Polymerizability, Recyclability, and Performance Properties. Chem 2021, 7, 670-685, 10.1016/j.chempr.2021.02.003
Xiong, W.; Chang, W.; Shi, D.; Yang, L.; Tian, Z.; Wang, H.; Zhang, Z.; Zhou, X.; Chen, E. Q.; Lu, H. Geminal Dimethyl Substitution Enables Controlled Polymerization of Penicillamine-Derived β-Thiolactones and Reversed Depolymerization. Chem 2020, 6, 1831-1843, 10.1016/j.chempr.2020.06.003
Lu, X. B.; Liu, Y.; Zhou, H. Learning Nature: Recyclable Monomers and Polymers. Chem.-Eur. J. 2018, 24, 11255-11266, 10.1002/chem.201704461
Darensbourg, D. J.; Wei, S. H.; Yeung, A. D.; Ellis, W. C. An Efficient Method of Depolymerization of Poly(Cyclopentene Carbonate) to Its Comonomers: Cyclopentene Oxide and Carbon Dioxide. Macromolecules 2013, 46, 5850-5855, 10.1021/ma401286x
Deacy, A. C.; Gregory, G. L.; Sulley, G. S.; Chen, T. T. D.; Williams, C. K. Sequence Control from Mixtures: Switchable Polymerization Catalysis and Future Materials Applications. J. Am. Chem. Soc. 2021, 143, 10021-10040, 10.1021/jacs.1c03250
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Advances in the Use of CO2 as a Renewable Feedstock for the Synthesis of Polymers. Chem. Soc. Rev. 2019, 48, 4466-4514, 10.1039/c9cs00047j
Yuan, J.; Xiong, W.; Zhou, X.; Zhang, Y.; Shi, D.; Li, Z.; Lu, H. 4-Hydroxyproline-Derived Sustainable Polythioesters: Controlled Ring-Opening Polymerization, Complete Recyclability, and Facile Functionalization. J. Am. Chem. Soc. 2019, 141, 4928-4935, 10.1021/jacs.9b00031
Xu, G.; Wang, Q. Chemically Recyclable Polymer Materials: Polymerization and Depolymerization Cycles. Green Chem. 2022, 24, 2321-2346, 10.1039/d1gc03901f
Endo, T.; Kakimoto, K.; Ochiai, B.; Nagai, D. Synthesis and Chemical Recycling of a Polycarbonate Obtained by Anionic Ring-Opening Polymerization of a Bifunctional Cyclic Carbonate. Macromolecules 2005, 38, 8177-8182, 10.1021/ma050791v
Yu, Y.; Fang, L. M.; Liu, Y.; Lu, X. B. Chemical Synthesis of CO2-Based Polymers with Enhanced Thermal Stability and Unexpected Recyclability from Biosourced Monomers. ACS Catal. 2021, 11, 8349-8357, 10.1021/acscatal.1c01376
Carrodeguas, L. P.; Chen, T. T. D.; Gregory, G. L.; Sulley, G. S.; Williams, C. K. High Elasticity, Chemically Recyclable, Thermoplastics from Bio-Based Monomers: Carbon Dioxide, Limonene Oxide and ϵ-Decalactone. Green Chem. 2020, 22, 8298-8307, 10.1039/d0gc02295k
Li, C.; Sablong, R. J.; van Benthem, R. A. T. M.; Koning, C. E. Unique Base-Initiated Depolymerization of Limonene-Derived Polycarbonates. ACS Macro Lett. 2017, 6, 684-688, 10.1021/acsmacrolett.7b00310
Fahnhorst, G. W.; Hoye, T. R. A Carbomethoxylated Polyvalerolactone from Malic Acid: Synthesis and Divergent Chemical Recycling. ACS Macro Lett. 2018, 7, 143-147, 10.1021/acsmacrolett.7b00889
Kaitz, J. A.; Lee, O. P.; Moore, J. S. Depolymerizable Polymers: Preparation, Applications, and Future Outlook. MRS Commun. 2015, 5, 191-204, 10.1557/mrc.2015.28
Zhang, J.; Wang, L.; Liu, S.; Li, Z. Synthesis of Diverse Polycarbonates by Organocatalytic Copolymerization of CO2 and Epoxides: From High Pressure and Temperature to Ambient Conditions. Angew. Chem., Int. Ed. 2022, 61, e202111197 10.1002/anie.202111197
Olsén, P.; Odelius, K.; Albertsson, A. C. Ring-Closing Depolymerization: A Powerful Tool for Synthesizing the Allyloxy-Functionalized Six-Membered Aliphatic Carbonate Monomer 2-Allyloxymethyl-2-Ethyltrimethylene Carbonate. Macromolecules 2014, 47, 6189-6195, 10.1021/ma5012304
Honda, M.; Tamura, M.; Nakao, K.; Suzuki, K.; Nakagawa, Y.; Tomishige, K. Direct Cyclic Carbonate Synthesis from CO2 and Diol over Carboxylation/Hydration Cascade Catalyst of CeO2 with 2-Cyanopyridine. ACS Catal. 2014, 4, 1893-1896, 10.1021/cs500301d
Kindermann, N.; Jose, T.; Kleij, A. W. Synthesis of Carbonates from Alcohols and CO2. Top. Curr. Chem. 2017, 375, 15, 10.1007/s41061-016-0101-8
Huang, J.; Olsén, P.; Svensson Grape, E.; Inge, A. K.; Odelius, K. Simple Approach to Macrocyclic Carbonates with Fast Polymerization Rates and Their Polymer-to-Monomer Regeneration. Macromolecules 2022, 55, 608-614, 10.1021/acs.macromol.1c02225
Baker, M. S.; Kim, H.; Olah, M. G.; Lewis, G. G.; Phillips, S. T. Depolymerizable Poly(Benzyl Ether)-Based Materials for Selective Room Temperature Recycling. Green Chem. 2015, 17, 4541-4545, 10.1039/c5gc01090j
Mejia, J. S.; Gillies, E. R. Triggered Degradation of Poly(Ester Amide)s via Cyclization of Pendant Functional Groups of Amino Acid Monomers. Polym. Chem. 2013, 4, 1969-1982, 10.1039/c3py21094d
Dahlhauser, S. D.; Escamilla, P. R.; Vandewalle, A. N.; York, J. T.; Rapagnani, R. M.; Shei, J. S.; Glass, S. A.; Coronado, J. N.; Moor, S. R.; Saunders, D. P.; Anslyn, Ev. Sequencing of Sequence-Defined Oligourethanes via Controlled Self-Immolation. J. Am. Chem. Soc. 2020, 142, 2744-2749, 10.1021/jacs.9b12818
Yardley, R. E.; Kenaree, A. R.; Gillies, E. R. Triggering Depolymerization: Progress and Opportunities for Self-Immolative Polymers. Macromolecules 2019, 52, 6342-6360, 10.1021/acs.macromol.9b00965
Sagi, A.; Weinstain, R.; Karton, N.; Shabat, D. Self-Immolative Polymers. J. Am. Chem. Soc. 2008, 130, 5434-5435, 10.1021/ja801065d
Sirianni, Q. E. A.; Gillies, E. R. The Architectural Evolution of Self-Immolative Polymers. Polymer 2020, 202, 122638 10.1016/j.polymer.2020.122638
Kim, H.; Brooks, A. D.; Dilauro, A. M.; Phillips, S. T. Poly(Carboxypyrrole)s That Depolymerize from Head to Tail in the Solid State in Response to Specific Applied Signals. J. Am. Chem. Soc. 2020, 142, 9447-9452, 10.1021/jacs.0c02774
Peterson, G. I.; Larsen, M. B.; Boydston, A. J. Controlled Depolymerization: Stimuli-Responsive Self-Immolative Polymers. Macromolecules 2012, 45, 7317-7328, 10.1021/ma300817v
Pal, S.; Sommerfeldt, A.; Davidsen, M. B.; Hinge, M.; Pedersen, S. U.; Daasbjerg, K. Synthesis and Closed-Loop Recycling of Self-Immolative Poly(Dithiothreitol). Macromolecules 2020, 53, 4685-4691, 10.1021/acs.macromol.0c00861
DeWit, M. A.; Gillies, E. R. A Cascade Biodegradable Polymer Based on Alternating Cyclization and Elimination Reactions. J. Am. Chem. Soc. 2009, 131, 18327-18334, 10.1021/ja905343x
Addy, P. S.; Shivrayan, M.; Cencer, M.; Zhuang, J.; Moore, J. S.; Thayumanavan, S. Polymer with Competing Depolymerization Pathways: Chain Unzipping versus Chain Scission. ACS Macro Lett. 2020, 9, 855-859, 10.1021/acsmacrolett.0c00250
Dahlhauser, S. D.; Moor, S. R.; Vera, M. S.; York, J. T.; Ngo, P.; Boley, A. J.; Coronado, J. N.; Simpson, Z. B.; Anslyn, Ev. Efficient Molecular Encoding in Multifunctional Self-Immolative Urethanes. Cell Rep. Phys. Sci. 2021, 4, 100393 10.1016/j.xcrp.2021.100393
Maschmeyer, P. G.; Liang, X.; Hung, A.; Ahmadzai, O.; Kenny, A. L.; Luong, Y. C.; Forder, T. N.; Zeng, H.; Gillies, E. R.; Roberts, D. A. Post-Polymerization ‘Click' End-Capping of Polyglyoxylate Self-Immolative Polymers. Polym. Chem. 2021, 12, 6824-6831, 10.1039/d1py01169c
Addy, P. S.; Shivrayan, M.; Cencer, M.; Zhuang, J.; Moore, S.; Thayumanavan, S. Polymer with Competing Depolymerization Pathways: Chain Unzipping versus Chain Scission. ACS Macro Lett. 2020, 9, 855-859, 10.1021/acsmacrolett.0c00250
Siragusa, F.; van den Broeck, E.; Ocando, C.; Müller, A. J.; de Smet, G.; Maes, B. U. W.; de Winter, J.; van Speybroeck, V.; Grignard, B.; Detrembleur, C. Access to Biorenewable and CO2-Based Polycarbonates from Exovinylene Cyclic Carbonates. ACS Sustainable Chem. Eng. 2021, 9, 1714-1728, 10.1021/acssuschemeng.0c07683
Gennen, S.; Grignard, B.; Tassaing, T.; Jérôme, C.; Detrembleur, C. CO2-Sourced α-Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(Urethane)s and Poly(Carbonate)s. Angew. Chem., Int. Ed. 2017, 56, 10394-10398, 10.1002/anie.201704467
Ngassam Tounzoua, C.; Grignard, B.; Detrembleur, C. Exovinylene Cyclic Carbonates: Multifaceted CO2-Based Building Blocks for Modern Chemistry and Polymer Science. Angew. Chem., Int. Ed. 2022, 61, e202116066 10.1002/anie.202116066
Demarteau, J.; Olazabal, I.; Jehanno, C.; Sardon, H. Aminolytic Upcycling of Poly(Ethylene Terephthalate) Wastes Using a Thermally-Stable Organocatalyst. Polym. Chem. 2020, 11, 4875-4882, 10.1039/d0py00067a
Hammond, G. S. A Correlation of Reaction Rates. J. Am. Chem. Soc. 1955, 77, 334-338, 10.1021/ja01607a027
Jehanno, C.; Pérez-Madrigal, M. M.; Demarteau, J.; Sardon, H.; Dove, A. P. Organocatalysis for Depolymerisation. Polym. Chem. 2019, 10, 172-186, 10.1039/c8py01284a
Tang, X.; Chen, E. Y. X. Toward Infinitely Recyclable Plastics Derived from Renewable Cyclic Esters. Chem 2019, 5, 284-312, 10.1016/j.chempr.2018.10.011
Choodej, S.; Teerawatananond, T.; Mitsunaga, T.; Pudhom, K. Chamigrane Sesquiterpenes from a Basidiomycetous Endophytic Fungus XG8D Associated with Thai Mangrove Xylocarpus Granatum. Mar. Drugs 2016, 14, 132, 10.3390/md14070132
Buisine, O.; Jaunzems, J.; Kim, Y.-J.; Kasubke, M. New Components for Electrolyte Compositions. WIPO Patent WO2020025502A1, 2020.
Hidaka, T.; Yamazaki, S.; Tani, A.; Kuwajima, Y. Electrolyte Solution, Electrochemical Device, Lithium Ion Secondary Battery, and Module. WIPO Patent WO2021235358A1, 2020.
Flynn, D. L.; Ahn, Y. M.; Caldwell, T.; Vogeti, L. Preparation of (Phenylamino)Pyrimidine Compounds as Autophagy Inhibitors for Treating Cancers. US Patent US20200354352A1, 2020.
Sherman, D.; Cardozo, T. J. Indazole Derivatives as CaMKK2 Inhibitors and Their Preparation, Pharmaceutical Compositions and Use in the Treatment of Diseases. US Patent US20200369656A1, 2020.
Bennett, F.; Imbriglio, J. E.; Kerekes, A. D.; Khan, T.; Lankin, C.; Li, D.; Wu, Z.; Xiong, Y.; Youm, H.; Yu, Y.; Kurissery, A. T.; Komanduri, V.; Ye, F. Preparation of 5,6,7,8-Tetrahydroacridine-2-Carboxamide Derivatives as Natriuretic Peptide Receptor A Agonists Useful for the Treatment of Cardiometabolic Diseases, Kidney Disease, and Diabetes. WIPO Patent WO2020236690, 2020.
Nieman, J.; Hena, M.; Bai, B.; Kandadai, A. S.; Belovodskiy, A. Pyridopyrazine Derivatives as Inhibitors of Human Herpesviruses and Their Preparation. WIPO Patent WO2021174355A1, 2021.
Benz, J.; Grether, U.; Hornsperger, B.; Kroll, C.; Kuhn, B.; O'Hara, F.; Richter, H. Preparation of Hexahydro-1H-Pyrido[1,2-a]Pyrazin-2-Yl Methanone Derivatives as Monoacylglycerol Lipase Inhibitors. WIPO Patent WO2021001330A1, 2021.
Boisnard, S.; El-Ahmad, Y.; Fett, E.; Halley, F.; Nicolai, E.; Tabart, M.; Terrier, C.; Vivet, B. Preparation of Novel Substituted 6,7-Dihydro-5H-Benzo[7]Annulene Compounds as Inhibitors and Degraders of Estrogen Receptors. WIPO Patent WO2021063967A1, 2021.
Kaldor, S. W.; Kanouni, T.; Tyhonas, J.; Murphy, E. A. N-Heteroarylphenyl Heterocyclecarboxamides as Inhibitors of RAF Kinases and Their Preparation. WIPO Patent WO2021081375A1, 2021.