[en] Transcriptional regulation is key in bacteria for providing an adequate response in time and space to changing environmental conditions. However, despite decades of research, the binding sites and therefore the target genes and the function of most transcription factors (TFs) remain unknown. Filling this gap in knowledge through conventional methods represents a colossal task which we demonstrate here can be significantly facilitated by a widespread feature in transcriptional control: the autoregulation of TFs implying that the yet unknown transcription factor binding site (TFBS) is neighboring the TF itself. In this work, we describe the "AURTHO" methodology (AUtoregulation of oRTHOlogous transcription factors), consisting of analyzing upstream regions of orthologous TFs in order to uncover their associated TFBSs. AURTHO enabled the de novo identification of novel TFBSs with an unprecedented improvement in terms of quantity and reliability. DNA-protein interaction studies on a selection of candidate cis-acting elements yielded an >90 % success rate, demonstrating the efficacy of AURTHO at highlighting true TF-TFBS couples and confirming the identification in a near future of a plethora of TFBSs across all bacterial species.
Naômé, Aymeric; InBioS - Center for Protein Engineering, University of Liège, B-4000 Liège, Belgium, HEDERA 22, Boulevard du Rectorat 27b, B-4000 Liège, Belgium
Jadot, Cédric; InBioS - Center for Protein Engineering, University of Liège, B-4000 Liège, Belgium
Browning, D.F., Butala, M., Busby, S.J.W., Bacterial transcription factors: regulation by pick “N” mix. J. Mol. Biol. 431:20 (2019 Sep 20), 4067–4077.
Browning, D.F., Busby, S.J.W., Local and global regulation of transcription initiation in bacteria. Nat. Rev. Microbiol. 14:10 (2016 Oct), 638–650.
Mejía-Almonte, C., Busby, S.J.W., Wade, J.T., van Helden, J., Arkin, A.P., Stormo, G.D., et al. Redefining fundamental concepts of transcription initiation in bacteria. Nat. Rev. Genet. 21:11 (2020 Nov), 699–714.
Van Hijum, S.A.F.T., Medema, M.H., Kuipers, O.P., Mechanisms and evolution of control logic in prokaryotic transcriptional regulation. Microbiol. Mol. Biol. Rev. 73:3 (2009), 481–509.
Baumgart, L.A., Lee, J.E., Salamov, A., Dilworth, D.J., Na, H., Mingay, M., et al. Persistence and plasticity in bacterial gene regulation. Nat. Methods 18:12 (2021 Dec), 1499–1505.
Santos-Zavaleta, A., Salgado, H., Gama-Castro, S., Sánchez-Pérez, M., Gómez-Romero, L., Ledezma-Tejeida, D., et al. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Res. 47:D1 (2019 Jan 8), D212–D220.
Bartlett, A., O'Malley, R.C., Huang, S.C., Galli, M., Nery, J.R., Gallavotti, A., et al. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat. Protoc. 12:8 (2017), 1659–1672.
Ishihama, A., Shimada, T., Yamazaki, Y., Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors. Nucleic Acids Res. 44:5 (2016 Mar 18), 2058–2074.
Liu, B., Yang, J., Li, Y., McDermaid, A., Ma, Q., An algorithmic perspective of de novo cis-regulatory motif finding based on ChIP-seq data. Brief. Bioinform. 19:5 (2018 Sep 28), 1069–1081.
Park, P.J., ChIP–seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10:10 (2009 Oct), 669–680.
Wang, Z., Gerstein, M., Snyder, M., RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:1 (2009 Jan), 57–63.
Świątek-Połatyńska, M.A., Bucca, G., Laing, E., Gubbens, J., Titgemeyer, F., Smith, C.P., et al. Genome-wide analysis of in vivo binding of the master regulator DasR in Streptomyces coelicolor identifies novel non-canonical targets. PLoS ONE, 10(4), 2015 Apr 15, e0122479.
Dwarakanath, S., Chaplin, A.K., Hough, M.A., Rigali, S., Vijgenboom, E., Worrall, J.A.R., Response to copper stress in Streptomyces lividans extends beyond genes under direct control of a copper-sensitive operon repressor protein (CsoR) *. J. Biol. Chem. 287:21 (2012 May 18), 17833–17847.
Liao, C., Rigali, S., Cassani, C.L., Marcellin, E., Nielsen, L.K., Ye, B.-C., Control of chitin and N-acetylglucosamine utilization in Saccharopolyspora erythraea. Microbiology 160:9 (2014 Sep 1), 1914–1928.
Rigali, S., Schlicht, M., Hoskisson, P., Nothaft, H., Merzbacher, M., Joris, B., et al. Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships. Nucleic Acids Res. 32:11 (2004), 3418–3426.
Rodionov, D.A., Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. [Internet] Chem. Rev., 107(8), 2007 Available from: https://pubs.acs.org/sharingguidelines.
Yao, L.-L., Liao, C.-H., Huang, G., Zhou, Y., Rigali, S., Zhang, B., et al. GlnR-mediated regulation of nitrogen metabolism in the actinomycete Saccharopolyspora erythraea. Appl. Microbiol. Biotechnol. 98:18 (2014 Sep), 7935–7948.
Li, H., Rhodius, V., Gross, C., Siggia, E.D., Identification of the binding sites of regulatory proteins in bacterial genomes. Proc. Natl. Acad. Sci. U. S. A. 99:18 (2002 Sep 3), 11772–11777.
Mwangi, M.M., Siggia, E.D., Genome wide identification of regulatory motifs in Bacillus subtilis. BMC Bioinform., 16(4), 2003 May, 18.
Studholme, D.J., Bentley, S.D., Kormanec, J., Bioinformatic identification of novel regulatory DNA sequence motifs in Streptomyces coelicolor. BMC Microbiol., 4(1), 2004 Apr 8, 14.
Rigali, S., Derouaux, A., Giannotta, F., Dusart, J., Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J. Biol. Chem. 277:15 (2002), 12507–12515.
Janky, R., van Helden, J., Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution. BMC Bioinforma., 9(1), 2008 Jan 23, 37.
Wasserman, W.W., Sandelin, A., Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet. 5:4 (2004 Apr), 276–287.
Kazanov, M.D., Li, X., Gelfand, M.S., Osterman, A.L., Rodionov, D.A., Functional diversification of ROK-family transcriptional regulators of sugar catabolism in the Thermotogae phylum. Nucleic Acids Res. 41:2 (2013 Jan), 790–803.
Leyn, S.A., Suvorova, I.A., Kazakov, A.E., Ravcheev, D.A., Stepanova, V.V., Novichkov, P.S., et al. Comparative genomics and evolution of transcriptional regulons in Proteobacteria. Microb. Genomics, 2(7), 2016 Jul 11.
Novichkov, P.S., Kazakov, A.E., Ravcheev, D.A., Leyn, S.A., Kovaleva, G.Y., Sutormin, R.A., et al. RegPrecise 3.0 - a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics, 14, 2013, 1.
Novichkov, P.S., Laikova, O.N., Novichkova, E.S., Gelfand, M.S., Arkin, A.P., Dubchak, I., et al. RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res. 38:Database issue (2010 Jan), D111–D118.
Ravcheev, D.A., Khoroshkin, M.S., Laikova, O.N., Tsoy, O.V., Sernova, N.V., Petrova, S.A., et al. Comparative genomics and evolution of regulons of the LacI-family transcription factors. Front. Microbiol., 5, 2014, 294.
Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.-M., Challis, G.L., Thomson, N.R., James, K.D., et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:6885 (2002 May 9), 141–147.
Tsujibo, H., Kosaka, M., Ikenishi, S., Sato, T., Miyamoto, K., Inamori, Y., Molecular characterization of a high-affinity xylobiose transporter of Streptomyces thermoviolaceus OPC-520 and its transcriptional regulation. J. Bacteriol. 186:4 (2004 Feb 15), 1029–1037.
Schlösser, A., Weber, A., Schrempf, H., M, K., B, B., W, B., et al. Synthesis of the Streptomyces lividans maltodextrin ABC transporter depends on the presence of the regulator MalR. FEMS Microbiol. Lett. 196:1 (2001 Mar 1), 77–83.
Lechner, M., Findeiß, S., Steiner, L., Marz, M., Stadler, P.F., Prohaska, S.J., Proteinortho: detection of (Co-)orthologs in large-scale analysis. 2011.
El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47:D1 (2019 Jan 8), D427–D432.
Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49:D1 (2021 Jan 8), D412–D419.
Ortet, P., De Luca, G., Whitworth, D.E., Barakat, M., P2TF: a comprehensive resource for analysis of prokaryotic transcription factors. [cited 2017 Aug 23] BMC Microbiol., 13(628), 2012 Available from: http://www.p2tf.org/.
Bailey, T.L., Elkan, C., Fitting a mixture model by expectation maximization to discover motifs in biopolymers, 1994, 28–36.
Crooks, G.E., Hon, G., Chandonia, J.-M., Brenner, S.E., WebLogo: a sequence logo generator. Genome Res. 14 (2004), 1188–1190.
Hodgson, D.A., Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. [cited 2022 Mar 29] Advances in Microbial Physiology, 2000, Academic Press, 47–238 Available from: https://www.sciencedirect.com/science/article/pii/S0065291100420035.
van der Meij, A., Worsley, S.F., Hutchings, M.I., van Wezel, G.P., Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 41:3 (2017 May 1), 392–416.
Ohashi, K., Hataya, S., Nakata, A., Matsumoto, K., Kato, N., Sato, W., et al. Mannose- and mannobiose-specific responses of the insect-associated cellulolytic bacterium Streptomyces sp.sStrain SirexAA-E. Appl. Environ. Microbiol. 87:14 (2021), e02719–e02720.
Nguyen, J., The regulatory protein Reg1 of Streptomyces lividans binds the promoter region of several genes repressed by glucose. FEMS Microbiol. Lett. 175:1 (1999 Jun), 51–58.
Nguyen, J., Francou, F., Virolle, M.J., Guérineau, M., Amylase and chitinase genes in Streptomyces lividans are regulated by reg1, a pleiotropic regulatory gene. J. Bacteriol. 179:20 (1997 Oct), 6383–6390.
van Wezel, G.P., White, J., Young, P., Postma, P.W., Bibb, M.J., Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacI-galR family of regulatory genes. Mol. Microbiol. 23:3 (1997 Jan 1), 537–549.
van Wezel, G.P., White, J., Bibb, M.J., Postma, P.W., The malEFG gene cluster of Streptomyces coelicolor A3(2): characterization, disruption and transcriptional analysis. Mol Gen Genet. 254:5 (1997 May 1), 604–608.
Book, A.J., Lewin, G.R., Mcdonald, B.R., Takasuka, T.E., Wendt-Pienkowski, E., Doering, D.T., et al. Evolution of high cellulolytic activity in symbiotic streptomyces through selection of expanded gene content and coordinated gene expression. [cited 2017 Aug 24] PLoS Biol., 14(6), 2016 Available from: http://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1002475&type=printable.
Francis, I.M., Jourdan, S., Fanara, S., Loria, R., Rigali, S., The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies pathogenicity. mBio, 6(2), 2015 Feb 24, e02018.
Jourdan, S., Francis, I.M., Kim, M.J., Salazar, J.J.C., Planckaert, S., Frère, J.-M., et al. The CebE/MsiK transporter is a doorway to the cello-oligosaccharide-mediated induction of Streptomyces scabies pathogenicity. Sci. Rep., 6(January), 2016, 27144.
Marushima, K., Ohnishi, Y., Horinouchi, S., CebR as a master regulator for cellulose/cellooligosaccharide catabolism affects morphological development in Streptomyces griseus. J. Bacteriol. 191:19 (2009 Oct 1), 5930–5940.
Schlösser, A., Aldekamp, T., Schrempf, H., B, R.G., P, H.C., S, M.A., et al. Binding characteristics of CebR, the regulator of the ceb operon required for cellobiose/cellotriose uptake in Streptomyces reticuli. FEMS Microbiol. Lett. 190:1 (2000 Sep 1), 127–132.
Giannotta, F., Rigali, S., Virolle, M.-J., Dusart, J., Site-directed mutagenesis of conserved inverted repeat sequences in the xylanase C promoter region from Streptomyces sp.EC3. Mol. Genet. Genomics(270), 2003, 337–346.
Giannotta, F., Georis, J., Moreau, A., Mazy-Servais, C., Joris, B., Dusart, J., A sequence-specific DNA-binding protein interacts with the xZnC upstream region of Streptomyces sp. strain EC3. FEMS Microbiol. Lett. 142 (1996), 91–97.
Tsevelkhoroloo, M., Shim, S.H., Lee, C.-R., Hong, S.-K., Hong, Y.-S., LacI-family transcriptional regulator DagR acts as a repressor of the agarolytic pathway genes in Streptomyces coelicolor A3(2). Front. Microbiol., 6(12), 2021 Apr, 658657.
Tenconi, E., Urem, M., Świątek-Połatyńska, M.A., Titgemeyer, F., Muller, Y.A., van Wezel, G.P., et al. Multiple allosteric effectors control the affinity of DasR for its target sites. Biochem. Biophys. Res. Commun. 464:1 (2015 Aug 14), 324–329.
Bertram, R., Rigali, S., Wood, N., Lulko, A.T., Kuipers, O.P., Titgemeyer, F., Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. J. Bacteriol. 193:14 (2011 Jul 15), 3525–3536.
Urem, M., van Rossum, T., Bucca, G., Moolenaar, G.F., Laing, E., Świątek-Połatyńska, M.A., et al. OsdR of Streptomyces coelicolor and the dormancy regulator DevR of Mycobacterium tuberculosis control overlapping regulons. Traxler, M., (eds.) mSystems, 1(3), 2016, e00014–e00016.