[en] The capability of carbohydrate utilization in fish is limited compared to mammals. It has scientific and practical significance to improve the ability of fish to use carbohydrates. The efficiency of dietary carbohydrate utilization varies among fish with different feeding habits, which are associated with differential intestinal microbiota. In this study, we found that zebrafish fed with omnivorous diet (OD) and herbivorous diet (HD) showed better glucose homeostasis compared with carnivorous diet (CD) fed counterpart and the differential glucose utilization efficiency was attributable to the intestinal microbiota. The commensal bacterium Cetobacterium somerae, an acetate producer, was enriched in OD and HD groups, and administration of C. somerae in both adult zebrafish and gnotobiotic larval zebrafish models resulted in improved glucose homeostasis and increased insulin expression, supporting a causative role of C. somerae enrichment in glucose homeostasis in fish. The enrichment of C. somerae was constantly associated with higher acetate levels, and dietary supplementation of acetate promotes glucose utilization in zebrafish, suggesting a contribution of acetate in the function of C. somerae. Furthermore, we found that the beneficial effect of both acetate and C. somerae on glucose homeostasis was mediated through parasympathetic activation. Overall, this work highlights the existence of a C. somerae-brain axis in the regulation of glucose homeostasis in fish and suggests a role of acetate in mediating the axis function. Our results suggest potential strategies for improvement of fish carbohydrate utilization.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Wang, Anran ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech ; China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing China
Zhang, Zhen ; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing China
Ding, Qianwen ; Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
Yang, Yalin ; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing China
Bindelle, Jérôme ; Université de Liège - ULiège > Département GxABT > Ingénierie des productions animales et nutrition
Ran, Chao ; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing China
Zhou, Zhigang ; China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing China
Language :
English
Title :
Intestinal Cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish.
CSC - China Scholarship Council NSCF - National Natural Science Foundation of China
Funding text :
This work was supported by the National Natural Science Foundation of China (NSFC 31925038), the National Key R&D Program of China (2018YFD0900400), National Natural Science Foundation of China (NSFC 31972807, 31872584) and the China Scholarship Council (CSC 202003250120). We would kindly like to thank W.W.Z. (State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences) for his help in measuring the GC-MS data.
Panserat S. Nutritional regulation of gene expression for proteins involved in metabolism in cultured fish: focus on dietary carbohydrates. In Current Status of Molecular Research in Aquaculture; Wiley-Blackwell, NY; 2009.
Elo B, Villano C, Govorko D, White L. Larval zebrafish as a model for glucose metabolism: expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. J Clin Mol Endocrinol. 2007; 38 (4): 433. doi: 10.1677/jme-06-0037.
Hertz Y, Epstein N, Abraham M, Madar Z, Hepher B, Gertler A. Effects of metformin on plasma insulin, glucose metabolism and protein synthesis in the common carp (Cyprinus carpio L.). Aquaculture. 1989; 80 (1–2): 175. doi: 10.1016/0044-8486(89)90283-4.
Polakof S, Skiba-Cassy S, Panserat S. Glucose homeostasis is impaired by a paradoxical interaction between metformin and insulin in carnivorous rainbow trout. Am J Physiol Regul Integr Comp Physiol. 2009; 297 (6): R1769. doi: 10.1152/ajpregu.00369.2009.
Polakof S, Panserat S, Soengas JL, Moon TW. Glucose metabolism in fish: a review. J Comp Physiol B. 2012; 182 (8): 1015. doi: 10.1007/s00360-012-0658-7.
Mommsen T. Insulin in fishes and agnathans: history, structure and metabolic regulation. Rev Aqua Sci. 1991; 4: 225.
Navarro I, Leibush B, Moon T, Plisetskaya E, Banos N, Mendez E, Planas J, Gutierrez J. Insulin, insulin-like growth factor-I (IGF-I) and glucagon: the evolution of their receptors. Comp Biochem Physiol Biochem Mol Biol. 1999; 122 (2): 137. doi: 10.1016/S0305-0491(98)10163-3.
Panserat S, Medale F, Breque J, Plagnes-Juan E, Kaushik S. Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss). J Nutr Biochem. 2000; 11 (1): 22. doi: 10.1016/s0955-2863(99)00067-4.
Ekmann KS, Dalsgaard J, Holm J, Campbell PJ, Skov PV. Glycogenesis and de novo lipid synthesis from dietary starch in juvenile gilthead sea bream (Sparus aurata) quantified with stable isotopes. Brit J Nutr. 2013; 109 (12): 2135. doi: 10.1017/s000711451200445X.
Wang AR, Ran C, Ringø E, Zhou ZG. Progress in fish gastrointestinal microbiota research. Rev Aquac. 2018; 10 (3): 626. doi: 10.1111/raq.12191.
Vatsos I. Standardizing the microbiota of fish used in research. Lab Anim. 2017; 51 (4): 353. doi: 10.1177/0023677216678825.
Zhang M, Chekan JR, Dodd D, Hong PY, Radlinski L, Revindran V, Nair SK, Mackie RI, Cann I. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Proc Natl Acad Sci. 2014; 111 (35): E3708. doi: 10.1073/pnas.1406156111.
Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018; 57 (1): 1. doi: 10.1007/s00394-017-1445-8.
Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol. 2013; 28: 9. doi: 10.1111/jgh.12294.
Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest. 2011; 121 (6): 2126. doi: 10.1172/jci58109.
Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020; 11: 25. doi: 10.3389/fendo.2020.00025.
Butt RL, Volkoff H. Gut microbiota and energy homeostasis in fish. Front Endocrinol. 2019; 10: 9. doi: 10.3389/fendo.2019.00009.
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2020; 1; 229 (6). doi: 10.1038/s41579-020-0433-9.
Liu JL, Segovia I, Yuan XL, Gao ZH. Controversial roles of gut microbiota-derived short-chain fatty acids (SCFAs) on pancreatic β-Cell growth and insulin secretion. Int J Mol Sci. 2020; 21 (3): 910. doi: 10.3390/ijms21030910.
Hartstra AV, Bouter KE, Bäckhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care. 2015; 38 (1): 159. doi: 10.2337/dc14-0769.
Shimizu H, Ohue-Kitano R, Kimura I. Regulation of host energy metabolism by gut microbiota-derived short-chain fatty acids. Glycative Stress Research. 2019; 6 (3): 181. doi: 10.24659/gsr.6.3_181.
De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014; 156 (1–2): 84. doi: 10.1016/j.cell.2013.12.016.
Zhang H, Ding QW, Wang AR, Liu Y, Teame T, Ran C, Yang Y, He SX, Zhou WH, Olsen RE, et al. Effects of dietary sodium acetate on food intake, weight gain, intestinal digestive enzyme activities, energy metabolism and gut microbiota in cultured fish: zebrafish as a model. Aquaculture. 2020; 523: 735188. doi: 10.1016/j.aquaculture.2020.735188.
Kim E, Kim YS, Kim KM, Jung S, Yoo SH, Kim Y. D-Xylose as a sugar complement regulates blood glucose levels by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by enhancing glucose uptake in vitro. Nutr Res Pract. 2016; 10 (1): 11. doi: 10.4162/nrp.2016.10.1.11.
Zhang Z, Ran C, Ding QW, Liu HL, Xie MX, Yang YL, Xie YD, Gao CC, Zhang HL, Zhou ZG. Ability of prebiotic polysaccharides to activate a HIF1α-antimicrobial peptide axis determines liver injury risk in zebrafish. Commun Biol. 2019; 2 (1): 1. doi: 10.1038/s42003-019-0526-Z.
Pedroso GL, Hammes TO, Escobar TD, Fracasso LB, Forgiarini LF, Da Silveira TR. Blood collection for biochemical analysis in adult zebrafish. J Vis Exp. 2012;(63): e3865. doi: 10.3791/3865.
Pham LN, Kanther M, Semova I, Rawls JF. Methods for generating and colonizing gnotobiotic zebrafish. Nat Protoc. 2008; 3 (12): 1862. doi: 10.3791/3865.
Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell. 2006; 127 (2): 423. doi: 10.1016/j.cell.2006.08.043.
Ran C, Hu J, Liu WS, Liu Z, He SX, Dan BCT, Diem NN, Ooi EL, Zhou ZG. Thymol and carvacrol affect hybrid tilapia through the combination of direct stimulation and an intestinal microbiota-mediated effect: insights from a germ-free zebrafish model. J Nutri. 2016; 146 (5): 1132. doi: 10.3945/jn.115.229377.
Guo XZ, Ran C, Zhang Z, He SX, Jin M, Zhou ZG. The growth-promoting effect of dietary nucleotides in fish is associated with an intestinal microbiota-mediated reduction in energy expenditure. J Nutri. 2017; 147 (5): 781. doi: 10.3945/jn.116.245506.
Barbosa A, Maximino C, Pereira ADSF, Wolkers CPB, Alves FL, Ide LM, Herculano AM, Hoffmann A. Rapid method for acute intracerebroventricular injection in adult. In Zebrafish Protocols for Neurobehavioral Research; Springer. 2012. doi: 10.1007/978-1-61779-597-8_25.
Yamazak H, Philbrick W, Zawalich KC, Zawalich WS. Acute and chronic effects of glucose and carbachol on insulin secretion and phospholipase C activation: studies with diazoxide and atropine. Am J Physiol Endocrinol Metab. 2006; 290 (1): E26. doi: 10.1152/ajpendo.00149.2005.
Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, Petersen KF, Kibbey RG, Goodman AL, Shulman GI. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016; 534 (7606): 213. doi: 10.1038/nature18309.
Enes P, Panserat S, Kaushik S, Oliva-Teles A. Dietary carbohydrate utilization by European sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus aurata L.) juveniles. Rev Fish Sci. 2011; 19 (3): 201. doi: 10.1080/10641262.2011.579363.
Wilson R. Utilization of dietary carbohydrate by fish. Aquaculture. 1994; 124 (1–4): 67. doi: 10.1016/0044-8486(94)90363-8.
Van Kessel MA, Dutilh BE, Neveling K, Kwint MP, Veltman JA, Flik G, Jetten MS, Klaren PH, Den Camp HJO. Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). Amb Express. 2011; 1 (1): 41. doi: 10.1186/2191-0855-1-41.
Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF. Evidence for a core gut microbiota in the zebrafish. Isme J. 2011; 5 (10): 1595. doi: 10.1038/ismej.2011.38.
Larsen A, Mohammed H, Arias C. Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol. 2014; 116 (6): 1396. doi: 10.1111/jam.12475.
Hao YT, Wu SG, Jakovlić I, Zou H, Li WX, Wang GT. Impacts of diet on hindgut microbiota and short‐chain fatty acids in grass carp (Ctenopharyngodon idellus). Aquac Res. 2017; 48 (11): 5595. doi: 10.1111/are.13381.
Ramírez C, Coronado J, Silva A, Romero J. Cetobacterium is a major component of the microbiome of giant amazonian fish (Arapaima gigas) in Ecuador. Animals. 2018; 8 (11): 189. doi: 10.3390/ani8110189.
Foster G, Ross H, Naylor R, Collins M, Ramos CP, Garayzabal FF, Reid R. Cetobacterium ceti gen. nov., sp. nov., a new Gram‐negative obligate anaerobe from sea mammals. Lett Appl Microbiol. 1995; 21 (3): 202. doi: 10.1111/j.1472-765x.1995.tb01041.X.
Priyadarshini M, Villa SR, Fuller M, Wicksteed B, Mackay CR, Alquier T, Poitout V, Mancebo H, Mirmira RG, Gilchrist A. An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol Endocrinol. 2015; 29 (7): 1055. doi: 10.1210/me.2015-1007.
Sanna S, Van Zuydam NR, Mahajan A, Kurilshikov A, Vila AV, Võsa U, Mujagic Z, Masclee AA, Jonkers DM, Oosting M. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019; 51 (4): 600. doi: 10.1038/s41588-019-0350-X.
Le Roith D, Zick Y. Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care. 2001; 24 (3): 588. doi: 10.2337/diacare.24.3.588.
Do O H, Thorn P. Insulin secretion from beta cells within intact islets: location matters. Clin Exp Pharmacol Physiol. 2015; 42 (4): 406. doi: 10.1111/1440-1681.12368.
Briant L, Salehi A, Vergari E, Zhang Q, Rorsman P. Glucagon secretion from pancreatic α-cells. Ups J Med Sci. 2016; 121 (2): 113. doi: 10.3109/03009734.2016.1156789.