Polyphosphate; P acquisition; Nutrition; Root traits; Rhizosphere; Photosynthesis
Abstract :
[en] Abstract
Background
Among phosphate (P) fertilizers, polyphosphates (PolyPs) have shown promising results in terms of crop yield and plant P nutrition. However, compared to conventional P inputs, very little is known on the impact of PolyPs fertilizers on below- and above-ground plant functional traits involved in P acquisition. This study aims to evaluate agro-physiological responses of durum wheat variety ´Karim´ under different PolyPs applications. Three PolyPs fertilizers (PolyA, PolyB, and PolyC) versus one orthophosphate (OrthoP) were applied at three doses; 30 (D30), 60 (D60), and 90 (D90) kg P/ha under controlled conditions.
The PolyPs (especially PolyB and PolyC) application at D60 significantly increased morphophysiological root traits (e.g., RL: 42 and 130%; RSA:40 and 60%), shoot inorganic P (Pi) content (159 and 88%), and root P acquisition efficiency (471 and 296%) under PolyB and PolyC, respectively compared to unfertilized plants. Above-ground physiological parameters, mainly nutrient acquisition, chlorophyll content and chlorophyll fluorescence parameters were also improved under PolyB and PolyA application at D60. A significant and positive correlation between shoot Pi content and rhizosphere soil acid phosphatase activity was observed, which reveal the key role of these enzymes in PolyPs (A and B) use efficiency. Furthermore, increased P uptake/RL ratio along with shoot Pi indicates more efficient P allocation to shoots with less investment in root biomass production under PolyPs (especially A and B).
Conclusions
Under our experimental conditions, these findings report positive impacts of PolyPs on wheat growth performance, particularly on photosynthesis and nutrient acquisition at D60, along with modulation of root morpho-physiological traits likely responsible of P acquisition efficiency.
Disciplines :
Agriculture & agronomy
Author, co-author :
Khourchi, Said ; Université de Liège - ULiège > TERRA Research Centre ; Laboratory of Plant-Microbes Interactions, Agrobiosciences, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco
Oukarroum, Abdallah; Laboratory of Plant-Microbes Interactions, Agrobiosciences, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco
Tika, Asma; Laboratory of Plant-Microbes Interactions, Agrobiosciences, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco
Delaplace, Pierre ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Bargaz, Adnane; Laboratory of Plant-Microbes Interactions, Agrobiosciences, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco
Language :
English
Title :
Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance
White PJ, George TS, Dupuy LX, Karley AJ, Valentine TA, Wiesel L, et al. Root traits for infertile soils. Front Plant Sci. 2013;4. doi:10.3389/fpls.2013.00193. DOI: 10.3389/fpls.2013.00193
Sattari SZ, Bouwman AF, Giller KE, Van Ittersum MK. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci U S A. 2012;109:6348–53. 10.1073/pnas.1113675109. DOI: 10.1073/pnas.1113675109
Weeks JJ, Hettiarachchi GM. A review of the latest in phosphorus fertilizer technology: possibilities and pragmatism. J Environ Qual. 2019;48:1300. 10.2134/jeq2019.02.0067.
Campos P, Borie F, Cornejo P, López-Ráez JA, López-García Á, Seguel A. Phosphorus acquisition efficiency related to root traits: is mycorrhizal symbiosis a key factor to wheat and barley cropping? Front Plant Sci. 2018;9:752. 10.3389/fpls.2018.00752.
Syers JK, Johnston AE, Curtin D. Efficiency of soil and fertilizer phosphorus use : reconciling changing concepts of soil phosphorus behaviour with agronomic information. Food and Agriculture Organization of the United Nations; 2008.
Secco D, Bouain N, Rouached A, Prom-u-thai C, Hanin M, Pandey AK, et al. Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Crit Rev Biotechnol. 2017;37:898–910. 10.1080/07388551.2016.1268089.
Marschner H. Marschner’s mineral nutrition of higher plants. Academic Press; 2011.
Nannipieri P, Giagnoni L, Landi L, Renella G. Role of phosphatase enzymes in soil. In: Phosphorus in action. Springer, Berlin, Heidelberg; 2011. p. 215–43.
McBeath TM, McLaughlin MJ, Armstrong RD, Bell M, Bolland MDA, Conyers MK, et al. Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils. Soil Res. 2007;45:448. 10.1071/SR07044.
Kulakovskaya TV, Vagabov VM, Kulaev IS. Inorganic polyphosphate in industry, agriculture and medicine: Modern state and outlook. Process Biochem. 2012;47:1–10. 10.1016/j.procbio.2011.10.028.
McBeath TM, Lombi E, McLaughlin MJ, Bünemann EK. Polyphosphate-fertilizer solution stability with time, temperature, and pH. J Plant Nutr Soil Sci. 2007;170:387–91. 10.1002/jpln.200625166. DOI: 10.1002/jpln.200625166
McBeath TM. Chemical reactions of polyphosphate fertilisers in soils and solutions. PhD thesis, University of Adelaide School; 2006.
Torres-Dorante LO, Claassen N, Steingrobe B, Olfs H-W. Fertilizer-use efficiency of different inorganic polyphosphate sources: effects on soil P availability and plant P acquisition during early growth of corn. J Plant Nutr Soil Sci. 2006;169:509–15. 10.1002/jpln.200520584. DOI: 10.1002/jpln.200520584
Wang X, Gao Y, Hu B, Chu G. Comparison of the hydrolysis characteristics of three polyphosphates and their effects on soil P and micronutrient availability. Soil Use Manag. 2019. 10.1111/sum.12526. DOI: 10.1111/sum.12526
Gao Y, Wang X, Shah JA, Chu G. Polyphosphate fertilizers increased maize (Zea mays L.) P, Fe, Zn, and Mn uptake by decreasing P fixation and mobilizing microelements in calcareous soil. J Soils Sediments. 2020;20:1–11. 10.1007/s11368-019-02375-7. DOI: 10.1007/s11368-019-02375-7
Hamilton JG, Hilger D, Peak D. Mechanisms of tripolyphosphate adsorption and hydrolysis on goethite. J Colloid Interface Sci. 2017;491:190–8. 10.1016/j.jcis.2016.12.036.
Hamilton JG, Grosskleg J, Hilger D, Bradshaw K, Carlson T, Siciliano SD, et al. Chemical speciation and fate of tripolyphosphate after application to a calcareous soil. Geochem Trans. 2018;19:1. https://doi.org/10.1186/s12932-017-0046-z.
Busman LM. Behavior of polyphosphates in soils. Iowa State University; 1984. https://lib.dr.iastate.edu/rtd. Accessed 17 Mar 2019.
McBeath TM, Armstrong RD, Lombi E, McLaughlin MJ, Holloway RE. Responsiveness of wheat (Triticum aestivum) to liquid and granular phosphorus fertilisers in southern Australian soils. Soil Res. 2005;43:203. 10.1071/SR04066.
Ahmad F, Kelso WI. Pyrophosphate as a source of phosphorus: Hydrolysis under different conditions. J Res. 2001;12:130–9.
Jain S, Kushwaha S. Effect of ammonium polyphosphate on the yield of soybean (Glycine max). Indian Sociey Agron. 1993;38:33–6.
Rhue RD, Hensel DR, Yuan TL, Robertson WK. Ammonium orthophosphate and ammonium polyphosphate as sources of phosphorus for potatoes. Soil Sci Soc Am J. 1981;45:1229. 10.2136/sssaj1981.03615995004500060044x. DOI: 10.2136/sssaj1981.03615995004500060044x
Niemeyer R. Cyclic condensed metaphosphates in plants and the possible correlations between inorganic polyphosphates and other compounds. In: Progress in molecular and subcellular biology. Springer, Berlin, Heidelberg; 1999. p. 83–100. doi: https://doi.org/10.1007/978-3-642-58444-2_5.
Dick RP, Tabatabai MA. Polyphosphates as sources of phosphorus for plants. Fertil Res. 1987;12:107–18. 10.1007/BF01048912. DOI: 10.1007/BF01048912
Venugopalan MV, Prasad R. Relative efficiency of ammonium polyphosphate and orthophosphates for wheat and their residual effects on succeeding cowpea fodder. Fertil Res. 1989;20:109–14. 10.1007/BF01055435. DOI: 10.1007/BF01055435
Billore S, Bargale M. Influence of ammonium polyphosphate and orthophosphates on growth, yield and yield attributes in chickpea (Cicer arietinum) at different fertility levels. indian J Agric Sci. 1991;61:643–645.
Ottman MJ, Thompson TL, Doerge TA. Alfalfa yield and soil phosphorus increased with topdressed granular compared with fluid phosphorus fertilizer. Agron J. 2006;98:899. 10.2134/agronj2005.0257. DOI: 10.2134/agronj2005.0257
Pérez Corona ME, Van der Klundert I, Verhoeven JTA. Availability of organic and inorganic phosphorus compounds as phosphorus sources for Carex species. New Phytol. 1996;133:225–31. 10.1111/j.1469-8137.1996.tb01889.x.
Wang X, Wang Y, Tian J, Lim BL, Yan X, Liao H. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol. 2009;151:233–40. 10.1104/pp.109.138891. DOI: 10.1104/pp.109.138891
Wang L, Deng L, Tu P, Yang Y, Gong L, Zhang C. Research progresses of hydrolysis factors of ammonium polyphosphate and its application in fertilizer. Phosphate Compd Fertil. 2015;30:25–7.
Deng Y, Teng W, Tong Y-P, Chen X-P, Zou C-Q. Phosphorus efficiency mechanisms of two wheat cultivars as affected by a range of phosphorus levels in the field. Front Plant Sci. 2018;9:1614. https://doi.org/10.3389/fpls.2018.01614.
Wen Z, Li H, Shen Q, Tang X, Xiong C, Li H, et al. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus‐acquisition strategies of 16 crop species. New Phytol. 2019;223:nph.15833. https://doi.org/10.1111/nph.15833.
Horn R, Wingen LU, Snape JW, Dolan L. Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components. J Exp Bot. 2016;67:4535–43. 10.1093/jxb/erw228.
Dick RP, Tabatabai MA. Hydrolysis of polyphosphates in soils. Soil Sci. 1986;142:132–40. 10.1097/00010694-198609000-00002. DOI: 10.1097/00010694-198609000-00002
Chtouki M, Naciri R, Garré S, Nguyen F, Oukarroum A. Chickpea plant responses to polyphosphate fertiliser forms and drip fertigation frequencies: Effect on photosynthetic performance and phenotypic traits. Funct Plant Biol. 2021. 10.1071/FP21035.
Rizwan M, Meunier JD, Davidian JC, Pokrovsky OS, Bovet N, Keller C. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res. 2016;23:1414–27. 10.1007/s11356-015-5351-4.
Awlia M, Alshareef N, Saber N, Korte A, Oakey H, Panzarová K, et al. Genetic mapping of the early responses to salt stress in Arabidopsis thaliana. Plant J. 2021;107:544–63. 10.1111/TPJ.15310. DOI: 10.1111/TPJ.15310
Shrestha S, Brueck H, Asch F. Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels. J Photochem Photobiol. 2012;113:7–13. 10.1016/j.jphotobiol.2012.04.008. DOI: 10.1016/j.jphotobiol.2012.04.008
Dewez D, Goltsev V, Kalaji HM, Oukarroum A. Inhibitory effects of silver nanoparticles on photosystem II performance in Lemna gibba probed by chlorophyll fluorescence. Curr Plant Biol. 2018;16:15–21. 10.1016/j.cpb.2018.11.006.
Samborska IA, Kalaji HM, Sieczko L, Borucki W, Mazur R, Kouzmanova M, et al. Can just one-second measurement of chlorophyll a fluorescence be used to predict sulphur deficiency in radish (Raphanus sativus L. sativus) plants? Curr Plant Biol. 2019;19:100096. 10.1016/j.cpb.2018.12.002.
Sun Y, Mu C, Liu X. Key factors identified by proteomic analysis in maize (Zea mays L.) seedlings’ response to long-term exposure to different phosphate levels. Proteome Sci. 2018;16:1–17. https://doi.org/10.1186/s12953-018-0147-3.
Elhaissoufi W, Khourchi S, Ibnyasser A, Ghoulam C, Rchiad Z, Zeroual Y, et al. Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere p solubilization. Front Plant Sci. 2020;11:979. https://doi.org/10.3389/fpls.2020.00979.
Bargaz A, Noyce GL, Fulthorpe R, Carlsson G, Furze JR, Jensen ES, et al. Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Appl Soil Ecol. 2016;2017(120):179–88. 10.1016/j.apsoil.2017.08.011.
Fort F, Cruz P, Catrice O, Delbrut A, Luzarreta M, Stroia C, et al. Root functional trait syndromes and plasticity drive the ability of grassland Fabaceae to tolerate water and phosphorus shortage. Environ Exp Bot. 2015;110:62–72. 10.1016/j.envexpbot.2014.09.007.
Dick RP, Tabatabai MA. Hydrolysis of polyphosphates by corn roots. Plant Soil. 1986;94:247–56. 10.1007/BF02374348.
Wang YS, Jensen LS, Magid J. Differential responses of root and root hair traits of spring wheat genotypes to phosphorus deficiency in solution culture. Plant, Soil Environ. 2016;62:540–6. 10.17221/485/2016-PSE.
Manske GGB, Ortiz-Monasterio JI, Van Ginkel M, González RM, Rajaram S, Molina E, et al. Traits associated with improved P-uptake efficiency in CIMMYT’s semidwarf spring bread wheat grown on an acid Andisol in Mexico. Plant Soil. 2000;221:189–204. 10.1023/A:1004727201568.
Mahanta D, Rai RK, Mishra SD, Raja A, Purakayastha TJ, Varghese E. Influence of phosphorus and biofertilizers on soybean and wheat root growth and properties. F Crop Res. 2014;166:1–9. https://doi.org/10.1016/j.fcr.2014.06.016.
Jaidee R, Polthanee A, Saenjan P, Kirkham MB, Promkhambut A. Pre-or post-rice soybean production with phosphorus fertilization under rainfed conditions. Aust J Crop Sci. 2013;7:22–31.
Teng W, Deng Y, Chen X-P, Xu X-F, Chen R-Y, Lv Y, et al. Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. J Exp Bot. 2013;64:1403–11. 10.1093/jxb/ert023. DOI: 10.1093/jxb/ert023
Shen Q, Wen Z, Dong Y, Li H, Miao Y, Shen J. The responses of root morphology and phosphorus-mobilizing exudations in wheat to increasing shoot phosphorus concentration. AoB Plants. 2018;10. doi:10.1093/aobpla/ply054. DOI: 10.1093/aobpla/ply054
Lyu Y, Tang H, Li H, Zhang F, Rengel Z, Whalley WR, et al. Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Front Plant Sci. 2016;7:1939. 10.3389/fpls.2016.01939.
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015;207:505–18. 10.1111/nph.13363.
Li H, Ma Q, Li H, Zhang F, Rengel Z, Shen J. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant Soil. 2014;376:151–63. 10.1007/s11104-013-1965-9.
Rose TJ, Rengel Z, Ma Q, Bowden JW. Crop species differ in root plasticity response to localised P supply. J Plant Nutr Soil Sci. 2009;172:360–8. 10.1002/jpln.200800031.
Holloway RE, Bertrand I, Frischke AJ, Brace DM, McLaughlin MJ, Shepperd W. Improving fertiliser efficiency on calcareous and alkaline soils with fluid sources of P. N and Zn Plant Soil. 2001;236:209–19. 10.1023/A:1012720909293.
Sandaña P, Pinochet D. Phosphorus acquisition of wheat, pea and narrow-leafed lupin under different P supplies. J Soil Sci Plant Nutr. 2016;16:537–49. 10.4067/S0718-95162016005000044. DOI: 10.4067/S0718-95162016005000044
Brown LK, George TS, Dupuy LX, White PJ. A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? Ann Bot. 2013;112:317–30. 10.1093/aob/mcs231. DOI: 10.1093/aob/mcs231
Postma JA, Lynch JP. Root Cortical Aerenchyma Enhances the Growth of Maize on Soils with Suboptimal Availability of Nitrogen, Phosphorus, and Potassium. Plant Physiol. 2011;156:1190–201. 10.1104/pp.111.175489.
Zhang Q, Wang C, Tian J, Li K, Shou H. Identification of rice purple acid phosphatases related to posphate starvation signalling. Plant Biol. 2011;13:7–15. 10.1111/j.1438-8677.2010.00346.x. DOI: 10.1111/j.1438-8677.2010.00346.x
Williams A, Langridge H, Straathof AL, Muhamadali H, Hollywood KA, Goodacre R, et al. Root functional traits explain root exudation rate and composition across a range of grassland species. J Ecol. 2021. 10.1111/1365-2745.13630.
Bergmann J, Weigelt A, Van Der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, et al. The fungal collaboration gradient dominates the root economics space in plants. Sci Adv. 2020;6. 10.1126/sciadv.aba3756.
Pearse SJ, Veneklaas EJ, Cawthray GR, Bolland MDA, Lambers H. Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil. 2006;288:127–39. 10.1007/s11104-006-9099-y.
Gilliam JW. Hydrolysis and uptake of pyrophosphate by plant roots. Soil Sci Soc Am J. 1970;34:83–6. 10.2136/sssaj1970.03615995003400010025x. DOI: 10.2136/sssaj1970.03615995003400010025x
Wen Z, Li H, Shen J, Rengel Z. Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant Soil. 2017;416:377–89. 10.1007/s11104-017-3214-0.
Dick RP, Tabatabai MA. Factors affecting hydrolysis of polyphosphates in soils. Soil Sci. 1987;143:97–104. DOI: 10.1097/00010694-198702000-00003
Ramesh A, Sharma SK, Joshi OP, Khan IR. Phytase, phosphatase activity and p-nutrition of soybean as influenced by inoculation of Bacillus. Indian J Microbiol. 2011;51:94–9. 10.1007/s12088-011-0104-7. DOI: 10.1007/s12088-011-0104-7
Huang R, Wan B, Hultz M, Diaz JM, Tang Y. Phosphatase-mediated hydrolysis of linear polyphosphates. Environ Sci Technol. 2018;52:1183–90. 10.1021/acs.est.7b04553.
Walk TC, Jaramillo R, Lynch JP. Architectural Tradeoffs between Adventitious and Basal Roots for Phosphorus Acquisition. Plant Soil. 2006;279:347–66. 10.1007/s11104-005-0389-6. DOI: 10.1007/s11104-005-0389-6
Ho MD, Rosas JC, Brown KM, Lynch JP. Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol. 2005;32:737. 10.1071/FP05043.
Isaac ME, Borden KA. Nutrient acquisition strategies in agroforestry systems. Plant Soil. 2019;444:1–19. 10.1007/s11104-019-04232-5.
Honvault N, Houben D, Nobile C, Firmin S, Lambers H, Faucon MP. Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification. Plant Soil. 2021;461:137–50. 10.1007/s11104-020-04584-3. DOI: 10.1007/s11104-020-04584-3
Pearse SJ, Veneklaas EJ, Cawthray G, Bolland MDA, Lambers H. Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol. 2007;173:181–90. 10.1111/j.1469-8137.2006.01897.x.
Giovannetti M, Göschl C, Dietzen C, Andersen SU, Kopriva S, Busch W. Identification of novel genes involved in phosphate accumulation in Lotus japonicus through Genome Wide Association mapping of root system architecture and anion content. PLoS Genet. 2019;15. doi:10.1371/journal.pgen.1008126. DOI: 10.1371/journal.pgen.1008126
Wu C, Wang Z, Sun H, Guo S. Effects of different concentrations of nitrogen and phosphorus on chlorophyll biosynthesis, chlorophyll a fluorescence, and photosynthesis in Larix olgensis seedlings. Front For China. 2006;1:170–5. 10.1007/s11461-006-0019-3. DOI: 10.1007/s11461-006-0019-3
Raghothama KG. Phosphate Acquisition. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:665–93. 10.1146/annurev.arplant.50.1.665. DOI: 10.1146/annurev.arplant.50.1.665
Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, et al. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 2012;195:306–20. 10.1111/j.1469-8137.2012.04190.x. DOI: 10.1111/j.1469-8137.2012.04190.x
Sun B, Gao Y, Lynch JP. Large crown root number improves topsoil foraging and phosphorus acquisition. Plant Physiol. 2018;177:90–104. 10.1104/pp.18.00234.
Meng X, Chen WW, Wang YY, Huang ZR, Ye X, Chen LS, et al. Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS One. 2021;16. doi:10.1371/journal.pone.0246944. DOI: 10.1371/journal.pone.0246944
Chu S, Li H, Zhang X, Yu K, Chao M, Han S, et al. Physiological and proteomics analyses reveal low-phosphorus stress affected the regulation of photosynthesis in soybean. Int J Mol Sci. 2018;19:1688. 10.3390/ijms19061688. DOI: 10.3390/ijms19061688
Paunov M, Koleva L, Vassilev A, Vangronsveld J, Goltsev V. Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int J Mol Sci. 2018;19:787. 10.3390/ijms19030787. DOI: 10.3390/ijms19030787
Frydenvang J, van Maarschalkerweerd M, Carstensen A, Mundus S, Schmidt SB, Pedas PR, et al. Sensitive detection of phosphorus deficiency in plants using chlorophyll a fluorescence. Plant Physiol. 2015;169:353–61. 10.1104/pp.15.00823. DOI: 10.1104/pp.15.00823
Hernández I, Munné-Bosch S. Linking phosphorus availability with photo-oxidative stress in plants. J Exp Bot. 2015;66:2889–900. 10.1093/jxb/erv056. DOI: 10.1093/jxb/erv056
Oukarroum A, El Madidi S, Schansker G, Strasser RJ. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot. 2007;60:438–46. 10.1016/j.envexpbot.2007.01.002.
Carstensen A, Szameitat AE, Frydenvang J, Husted S. Chlorophyll a fluorescence analysis can detect phosphorus deficiency under field conditions and is an effective tool to prevent grain yield reductions in spring barley (Hordeum vulgare L.). Plant Soil. 2019;434:79–91. 10.1007/s11104-018-3783-6. DOI: 10.1007/s11104-018-3783-6
Gvozdevaite A, Oliveras I, Domingues TF, Peprah T, Boakye M, Afriyie L, et al. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiol. 2018;38:1912–25. 10.1093/treephys/tpy117. DOI: 10.1093/treephys/tpy117