Dams; Fluvial geomorphology; Integrated water resource management; Sand mining; Urbanization; Global and Planetary Change; Health (social science); Geography, Planning and Development; Ecology; Sociology and Political Science; Nature and Landscape Conservation; Management, Monitoring, Policy and Law
Abstract :
[en] Rivers and their surrounding lands are focal points of human development in the landscape. However, activities associated with development can greatly affect river processes, causing significant and often unintended environmental and human impacts. Despite the profound and varied environmental impacts that development-related alterations cause through hydrological, geomorphic, and ecological processes, they are not widely acknowledged outside of river management and affect resource availability and hazard exposure to people. In this paper, we propose a novel, interdisciplinary conceptual framework of river–land process interactions to support sustainable management and development. We introduce the term ‘land–river interface’ (LRI) to describe areas of the landscape in which river processes affect land, vegetation, and/or fauna, including humans, directly or indirectly. The multiple links between LRI processes and factors at the river basin, valley, and river channel (i.e. reach) scale are synthesized and a conceptual zonation of the LRI based on the process is proposed to serve as a framework to understand the impacts of human activity. Three examples of development-related activities (urbanization, dams and aggregate mining) illustrate how alteration to the form and functioning of river basins, valleys, and channels cause a range of impacts to be propagated throughout the landscape, often spatially or temporally distant from the activity. The diversity and severity of these impacts on the environment and people underscore the need to incorporate river processes, as represented in the LRI concept, into broader environmental management to better anticipate and mitigate negative impacts and maximize positive outcomes to deliver the benefits of sustainable development across society.
NERC - Natural Environment Research Council NSCF - National Natural Science Foundation of China Indian Department of Biotechnology
Funding text :
This work was supported by funding from the UK National Environment Research Council (NE/S01232X/1), the National Natural Science Foundation of China (No. 41911530080) and the Indian Department of Biotechnology (BT/IN/TaSE/69/AA/2018-19).
Aguiar FC, Martins MJ, Silva PC, Fernandes MR (2016) Riverscapes downstream of hydropower dams: effects of altered flows and historical land-use change. Landsc Urban Plan 153:83–98. 10.1016/j.landurbplan.2016.04.009 DOI: 10.1016/j.landurbplan.2016.04.009
Ahmed SN, Anh LH, Schneider P (2020) A dpsir assessment on ecosystem services challenges in the mekong delta, Vietnam: coping with the impacts of sand mining. Sustain 12:1–29. 10.3390/su12229323 DOI: 10.3390/su12229323
Amoateng P, Finlayson CM, Howard J, Wilson B (2018) Dwindling rivers and floodplains in Kumasi, Ghana: a socio-spatial analysis of the extent and trend. Appl Geogr 90:82–95. 10.1016/j.apgeog.2017.11.007 DOI: 10.1016/j.apgeog.2017.11.007
Azhoni A, Jude S, Holman I (2018) Adapting to climate change by water management organisations: enablers and barriers. J Hydrol 559:736–748. 10.1016/J.JHYDROL.2018.02.047 DOI: 10.1016/J.JHYDROL.2018.02.047
Baka J, Bailis R (2014) Wasteland energy-scapes: a comparative energy flow analysis of India’s biofuel and biomass economies. Ecol Econ 108:8–17. 10.1016/J.ECOLECON.2014.09.022 DOI: 10.1016/J.ECOLECON.2014.09.022
Batubara B, Kooy M, Zwarteveen M (2018) Uneven urbanisation: connecting flows of water to flows of labour and capital through Jakarta’s flood infrastructure. Antipode 50:1186–1205. 10.1111/anti.12401 DOI: 10.1111/anti.12401
Beck MW, Claassen AH, Hundt PJ (2012) Environmental and livelihood impacts of dams: common lessons across development gradients that challenge sustainability. Int J River Basin Manag 10:73–92. 10.1080/15715124.2012.656133 DOI: 10.1080/15715124.2012.656133
Bejarano MD, Nilsson C, Aguiar FC (2018) Riparian plant guilds become simpler and most likely fewer following flow regulation. J Appl Ecol 55:365–376. 10.1111/1365-2664.12949 DOI: 10.1111/1365-2664.12949
Beschta RL, Ripple WJ (2006) River channel dynamics following extirpation of wolves in northwestern Yellowstone National Park, USA. Earth Surf Process Landforms 31:1525–1539. 10.1002/esp.1362 DOI: 10.1002/esp.1362
Beschta RL, Ripple WJ (2008) Wolves, trophic cascades, and rivers in the Olympic National Park, USA. Ecohydrology 1:118–130. 10.1002/eco.12 DOI: 10.1002/eco.12
Biron PM, Buffin-Bélanger T, Larocque M et al (2014) Freedom space for rivers: a sustainable management approach to enhance river resilience. Environ Manage 54:1056–1073. 10.1007/s00267-014-0366-z DOI: 10.1007/s00267-014-0366-z
Booth DB, Roy AH, Smith B, Capps KA (2016) Global perspectives on the urban stream syndrome. Freshw Sci 35:412–420 DOI: 10.1086/684940
Braatne JH, Jamieson R, Gill KM, Rood SB (2007) Instream flows and the decline of riparian cottonwoods along the Yakima River, Washington, USA. River Res Appl 23:247–267. 10.1002/rra.978 DOI: 10.1002/rra.978
Bracken LJ, Wainwright J, Ali GA et al (2013) Concepts of hydrological connectivity: research approaches, pathways and future agendas. Earth-Sci Rev 119:17–34. 10.1016/j.earscirev.2013.02.001 DOI: 10.1016/j.earscirev.2013.02.001
Bracken LJ, Turnbull L, Wainwright J, Bogaart P (2015) Sediment connectivity: a framework for understanding sediment transfer at multiple scales. Earth Surf Process Landforms 40:177–188. 10.1002/esp.3635 DOI: 10.1002/esp.3635
Brandt SA (2000) Classification of geomorphological effects downstream of dams. CATENA 40:375–401. 10.1016/S0341-8162(00)00093-X DOI: 10.1016/S0341-8162(00)00093-X
Bravard J-P, Amoros C, Pautou G et al (1997) River incision in south-east France: morphological phenomena and ecological effects. Regul Rivers Res Manag 13:75–90. 10.1002/(SICI)1099-1646(199701)13:1%3c75::AID-RRR444%3e3.0.CO;2-6 DOI: 10.1002/(SICI)1099-1646(199701)13:1<75::AID-RRR444>3.0.CO;2-6
Bravard J-P, Goichot M, Gaillot S (2013) Geography of sand and gravel mining in the Lower Mekong River. EchoGéo. 10.4000/echogeo.13659 DOI: 10.4000/echogeo.13659
Brazier RE, Puttock A, Graham HA et al (2021) Beaver: nature’s ecosystem engineers. Wiley Interdiscip Rev Water 8:1–29. 10.1002/wat2.1494 DOI: 10.1002/wat2.1494
Bressan F, Papanicolaou AN, Abban B (2014) A model for knickpoint migration in first- and second-order streams. Geophys Res Lett 41:4987–4996. 10.1002/2014GL060823 DOI: 10.1002/2014GL060823
Brierly G, Fryirs K (2005) Geomorphology and river management: application of the Rivers Styles framework. Blackwell, Oxford
Buffin-Bélanger T, Biron PM, Larocque M et al (2015) Freedom space for rivers: an economically viable river management concept in a changing climate. Geomorphology 251:137–148. 10.1016/j.geomorph.2015.05.013 DOI: 10.1016/j.geomorph.2015.05.013
Cheng L, Zhang L, Chiew FHS et al (2017) Quantifying the impacts of vegetation changes on catchment storage-discharge dynamics using paired-catchment data. Water Resour Res 53:5963–5979. 10.1002/2017WR020600 DOI: 10.1002/2017WR020600
Chin A (2006) Urban transformation of river landscapes in a global context. Geomorphology 79:460–487. 10.1016/j.geomorph.2006.06.033 DOI: 10.1016/j.geomorph.2006.06.033
Chiverton A, Hannaford J, Holman I et al (2015) Which catchment characteristics control the temporal dependence structure of daily river flows? Hydrol Process 29:1353–1369. 10.1002/hyp.10252 DOI: 10.1002/hyp.10252
Corenblit D, Tabacchi E, Steiger J, Gurnell AM (2007) Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth-Science Rev 84:56–86. 10.1016/j.earscirev.2007.05.004 DOI: 10.1016/j.earscirev.2007.05.004
Csiki S, Rhoads BL (2010) Hydraulic and geomorphological effects of run-of-river dams. Prog Phys Geogr 34:755–780. 10.1177/0309133310369435 DOI: 10.1177/0309133310369435
Dempsey N, Jayaraj SR, Redmond E (2018) There’s always the river: social and environmental equity in rapidly urbanising landscapes in India. Landsc Res 43:275–288. 10.1080/01426397.2017.1315389 DOI: 10.1080/01426397.2017.1315389
Dépret T, Virmoux C, Gautier E et al (2021) Lowland gravel-bed river recovery through former mining reaches, the key role of sand. Geomorphology 373:107493. 10.1016/j.geomorph.2020.107493 DOI: 10.1016/j.geomorph.2020.107493
Dott CE, Gianniny GL, Clutter MJ, Aanes C (2016) Temporal and spatial variation in riparian vegetation and floodplain aquifers on the regulated Dolores River, Southwest Colorado, USA. River Res Appl 32:2056–2070. 10.1002/rra.3042 DOI: 10.1002/rra.3042
Downs PW, Dusterhoff SR, Sears WA (2013) Reach-scale channel sensitivity to multiple human activities and natural events: Lower Santa Clara River, California, USA. Geomorphology 189:121–134. 10.1016/j.geomorph.2013.01.023 DOI: 10.1016/j.geomorph.2013.01.023
Du S, Van Rompaey A, Peijun S, Wang J (2015) A dual effect of urban expansion on flood risk in the Pearl River Delta (China) revealed by land-use scenarios and direct runoff simulation. Nat Hazards 771(77):111–128. 10.1007/S11069-014-1583-8 DOI: 10.1007/S11069-014-1583-8
Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163. 10.1017/S1464793105006950 DOI: 10.1017/S1464793105006950
Everard M, Quinn N (2015) Realizing the value of fluvial geomorphology. Int J River Basin Manag 13:487–500. 10.1080/15715124.2015.1048457 DOI: 10.1080/15715124.2015.1048457
Fryirs KA, Brierley GJ (2013) Geomorphic analysis of river systems: an approach to reading the landscape. Wiley-Blackwell, Oxford
Fryirs KA, Brierley GJ (2016) Assessing the geomorphic recovery potential of rivers: forecasting future trajectories of adjustment for use in management. Wiley Interdiscip Rev Water. 10.1002/wat2.1158 DOI: 10.1002/wat2.1158
Grabowski RC, Surian N, Gurnell AM (2014) Characterizing geomorphological change to support sustainable river restoration and management. WileyInterdisc Rev Water 1:483–512. 10.1002/wat2.1037 DOI: 10.1002/wat2.1037
Grant GE, Schmidt JC, Lewis SL (2013) A geological framework for interpreting downstream effects of dams on rivers. In: O’Connor JE, Grant GE (eds) A peculiar river: geology, geomorphology and hydrology of the Deschutes River. American Geophysical Union, Oregon, pp 203–219 DOI: 10.1029/007WS13
Guo P, Meng X, Li Y et al (2015) Effect of large dams and irrigation in the upper reaches of the Yellow River of China, and the geohazards burden. Proc Geol Assoc 126:367–376. 10.1016/j.pgeola.2015.03.009 DOI: 10.1016/j.pgeola.2015.03.009
Gurnell AM (2013) Wood in fluvial systems. In: Shroder J, Wohl E (eds) Treatise on geomorphology. Academic Press, San Diego, pp 163–188 DOI: 10.1016/B978-0-12-374739-6.00236-0
Gurnell AM (2014) Plants as river system engineers. Earth Surf Process Landforms 39:4–25. 10.1002/Esp.3397 DOI: 10.1002/Esp.3397
Gurnell AM, Corenblit D, García de Jalón D et al (2015) A conceptual model of vegetation-hydrogeomorphology interactions within river corridors. River Res Appl. 10.1002/rra.2928 DOI: 10.1002/rra.2928
Gurnell AM, Rinaldi M, Belletti B et al (2016) A multi-scale hierarchical framework for developing understanding of river behaviour to support river management. Aquat Sci 78:1–16. 10.1007/s00027-015-0424-5 DOI: 10.1007/s00027-015-0424-5
Habersack HM (2000) The river-scaling concept (RSC): a basis for ecological assessments. Hydrobiologia 422:49–60 DOI: 10.1023/A:1017068821781
Habersack H, Haspel D, Kondolf M (2014) Large rivers in the anthropocene: Insights and tools for understanding climatic, land use, and reservoir influences. Water Resour Res 50:3641–3646. 10.1002/2013WR014731 DOI: 10.1002/2013WR014731
Hackney CR, Darby SE, Parsons DR et al (2020) River bank instability from unsustainable sand mining in the lower Mekong River. Nat Sustain 3:217–225. 10.1038/s41893-019-0455-3 DOI: 10.1038/s41893-019-0455-3
Hollis GE (1975) The effect of urbanization on floods of different recurrence interval. Water Resour Res 11:431–435. 10.1029/WR011i003p00431 DOI: 10.1029/WR011i003p00431
Huang MW, Liao JJ, Pan YW, Cheng MH (2014) Rapid channelization and incision into soft bedrock induced by human activity—implications from the Bachang River in Taiwan. Eng Geol 177:10–24. 10.1016/j.enggeo.2014.05.002 DOI: 10.1016/j.enggeo.2014.05.002
Ibisate A, Díaz E, Ollero A et al (2013) Channel response to multiple damming in a meandering river, middle and lower Aragón River (Spain). Hydrobiologia 712:5–23. 10.1007/s10750-013-1490-0 DOI: 10.1007/s10750-013-1490-0
Jaiswal D, Pandey J (2019) Investigations on peculiarities of land-water interface and its use as a stable testbed for accurately predicting changes in ecosystem responses to human perturbations: a sub-watershed scale study with the Ganga River. J Environ Manage 238:178–193. 10.1016/j.jenvman.2019.02.126 DOI: 10.1016/j.jenvman.2019.02.126
Janes V, Nicholas A, Collins A, Quine T (2017) Analysis of fundamental physical factors influencing channel bank erosion: results for contrasting catchments in England and Wales. Environ Earth Sci. 10.1007/s12665-017-6593-x DOI: 10.1007/s12665-017-6593-x
Juracek KE (2015) The aging of America’s reservoirs: In-Reservoir and downstream physical changes and habitat implications. JAWRA J Am Water Resour Assoc 51:168–184. 10.1111/jawr.12238 DOI: 10.1111/jawr.12238
Karr JR, Schlosser IJ (1978) Water resources and the land-water interface. Science (80-) 201:229–234. 10.1126/science.201.4352.229 DOI: 10.1126/science.201.4352.229
Kim JH, Fourcaud T, Jourdan C et al (2017) Vegetation as a driver of temporal variations in slope stability: The impact of hydrological processes. Geophys Res Lett 44:4897–4907. 10.1002/2017GL073174 DOI: 10.1002/2017GL073174
Koehnken L (2018) Impacts of sand mining on ecosystem structure, process & biodiversity in rivers. WWF, Gland
Koehnken L, Rintoul MS, Goichot M et al (2020) Impacts of riverine sand mining on freshwater ecosystems: a review of the scientific evidence and guidance for future research. River Res Appl. 10.1002/rra.3586 DOI: 10.1002/rra.3586
Kondolf GM (1994) Geomorphic and environmental effects of instream gravel mining. Landsc Urban Plan 28:225–243. 10.1016/0169-2046(94)90010-8 DOI: 10.1016/0169-2046(94)90010-8
Kondolf GM (1997) Hungry water: effects of dams and gravel mining on river channels. Environ Manage 21:533–551. 10.1007/s002679900048 DOI: 10.1007/s002679900048
Kondolf GM, Podolak K (2014) Space and time scales in human-landscape systems. Environ Manage 53:76–87. 10.1007/s00267-013-0078-9 DOI: 10.1007/s00267-013-0078-9
Kondolf GM, Schmitt RJP, Carling P et al (2018) Changing sediment budget of the Mekong: cumulative threats and management strategies for a large river basin. Sci Total Environ 625:114–134. 10.1016/j.scitotenv.2017.11.361 DOI: 10.1016/j.scitotenv.2017.11.361
Kondolf GM, Boulton AJ, O’Daniel S, et al (2006) Process-based ecological river restoration: visualizing three-dimensional connectivity and dynamic vectors to recover lost linkages. Ecol Soc 11:5. http://www.ecologyandsociety.org/v
Lewandowski J, Arnon S, Banks E et al (2019) Is the Hyporheic Zone Relevant beyond the Scientific Community ? Water 11:1–33. 10.3390/w11112230 DOI: 10.3390/w11112230
Lewin J (2010) Medieval environmental impacts and feedbacks: the lowland floodplains of England and Wales. Geoarchaeol Int J 25:267–311. 10.1002/Gea.20308 DOI: 10.1002/Gea.20308
Liermann CR, Nilsson C, Robertson J, Ng RY (2012) Implications of dam obstruction for global freshwater fish diversity. Bioscience 62:539–548. 10.1525/bio.2012.62.6.5 DOI: 10.1525/bio.2012.62.6.5
Loheide SP, Booth EG (2011) Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater-dependent ecosystems. Geomorphology 126:364–376. 10.1016/j.geomorph.2010.04.016 DOI: 10.1016/j.geomorph.2010.04.016
Magliozzi C, Grabowski RC, Packman AI, Krause S (2018) Toward a conceptual framework of hyporheic exchange across spatial scales. Hydrol Earth Syst Sci 22:6163–6185. 10.5194/hess-22-6163-2018 DOI: 10.5194/hess-22-6163-2018
Marcinkowski P, Grabowski RC, Okruszko T (2017) Controls on anastomosis in lowland river systems: towards process-based solutions to habitat conservation. Sci Total Environ 609:1544–1555. 10.1016/J.SCITOTENV.2017.07.183 DOI: 10.1016/J.SCITOTENV.2017.07.183
McCarthy TS, Ellery WN, Bloem A (1998) Some observations on the geomorphological impact of hippopotamus (Hippopotamus amphibius L.) in the Okavango Delta. Botswana Afr J Ecol 36:44–56. 10.1046/j.1365-2028.1998.89-89089.x DOI: 10.1046/j.1365-2028.1998.89-89089.x
McCluney KE, Poff NL, Palmer MA et al (2014) Riverine macrosystems ecology: sensitivity, resistance, and resilience of whole river basins with human alterations. Front Ecol Environ 12:48–58. 10.1890/120367 DOI: 10.1890/120367
McDonnell JJ (2013) Are all runoff processes the same? Hydrol Process 27:4103–4111. 10.1002/hyp.10076 DOI: 10.1002/hyp.10076
McGrane SJ, Acuto M, Artioli F et al (2019) Scaling the nexus: towards integrated frameworks for analysing water, energy and food. Geogr J 185:419–431. 10.1111/geoj.12256 DOI: 10.1111/geoj.12256
Morgan RPC, Rickson RJ (1995) Slope stabilization and erosion control: a bioengineering approach. Taylor & Francis, London
Nelson NC, Erwin SO, Schmidt JC (2013) Spatial and temporal patterns in channel change on the Snake River downstream from Jackson Lake dam, Wyoming. Geomorphology 200:132–142. 10.1016/j.geomorph.2013.03.019 DOI: 10.1016/j.geomorph.2013.03.019
Papanicolaou AN, Thomas JT, Wilson CG et al (2019) The migration diary of a knickpoint in a channelized stream with a cohesive bed. Water Resour Res 55:3433–3451. 10.1029/2018WR023793 DOI: 10.1029/2018WR023793
Park E, Ho HL, Tran DD et al (2020) Dramatic decrease of flood frequency in the Mekong Delta due to river-bed mining and dyke construction. Sci Total Environ 723:138066. 10.1016/j.scitotenv.2020.138066 DOI: 10.1016/j.scitotenv.2020.138066
Peduzzi P (2014) Sand, rarer than one thinks. United Nations Environment Program (UNEP) 2012:1–15
Petts GE, Gurnell AM (2005) Dams and geomorphology: research progress and future directions. Geomorphology 71:27–47. 10.1016/j.geomorph.2004.02.015 DOI: 10.1016/j.geomorph.2004.02.015
Piégay H, Darby SE, Mosselman E, Surian N (2005) A review of techniques available for delimiting the erodible river corridor: a sustainable approach to managing bank erosion. River Res Appl 21:773–789. 10.1002/rra.881 DOI: 10.1002/rra.881
Rice SP (2021) Why so skeptical? The role of animals in fluvial geomorphology. Wiley Interdiscip Rev Water 8:1–11. 10.1002/wat2.1549 DOI: 10.1002/wat2.1549
Richardson JS, Zhang Y, Marczak LB (2010) Resource subsidies across the land-freshwwater interface and responses in recipient communities. River Res Appl 26:55–66 DOI: 10.1002/rra.1283
Richter BD, Postel SL, Revenga C et al (2010) Lost in development’s shadow: The downstream human consequences of dams. Water Altern 3:14–42
Richter BD, Thomas GA (2007) Restoring environmental flows by modifying dam operations. Ecol Soc 12:12. http://www.ecologyandsociety.org
Rinaldi M, Simon A (1998) Bed-level adjustments in the Arno River, central Italy. Geomorphology 22:57–71. 10.1016/S0169-555x(97)00054-8 DOI: 10.1016/S0169-555x(97)00054-8
Roy AH, Capps KA, El-Sabaawi RW et al (2016) Urbanization and stream ecology: diverse mechanisms of change. Freshw Sci 35:272–277. 10.1086/685097 DOI: 10.1086/685097
Russell KL, Vietz GJ, Fletcher TD (2020) How urban stormwater regimes drive geomorphic degradation of receiving streams. Prog Phys Geogr Earth Environ 44:746–778. 10.1177/0309133319893927 DOI: 10.1177/0309133319893927
Rust W, Corstanje R, Holman IP, Milne AE (2014) Detecting land use and land management influences on catchment hydrology by modelling and wavelets. J Hydrol 517:378–389. 10.1016/j.jhydrol.2014.05.052 DOI: 10.1016/j.jhydrol.2014.05.052
Rust W, Cuthbert M, Bloomfield J et al (2021) Exploring the role of hydrological pathways in modulating multi-annual climate teleconnection periodicities from UK rainfall to streamflow. Hydrol Earth Syst Sci 25:2223–2237. 10.5194/hess-25-2223-2021 DOI: 10.5194/hess-25-2223-2021
Salmoral G, Zegarra E, Vázquez-Rowe I et al (2020) Water-related challenges in nexus governance for sustainable development: insights from the city of Arequipa, Peru. Sci Total Environ 747:141114. 10.1016/j.scitotenv.2020.141114 DOI: 10.1016/j.scitotenv.2020.141114
Santos A, Fernandes MR, Aguiar FC et al (2018) Effects of riverine landscape changes on pollination services: a case study on the River Minho, Portugal. Ecol Indic 89:656–666. 10.1016/j.ecolind.2018.02.036 DOI: 10.1016/j.ecolind.2018.02.036
Schwartz FW, Lee S, Darrah TH (2021) A Review of the Scope of Artisanal and small-scale mining worldwide, poverty, and the associated health impacts. GeoHealth. 10.1029/2020GH000325 DOI: 10.1029/2020GH000325
Scott ML, Shafroth PB, Auble GT (1999) Responses of riparian cottonwoods to alluvial water table declines. Environ Manage 23:347–358. 10.1007/s002679900191 DOI: 10.1007/s002679900191
Shaw EM (2011) Hydrology in practice, 4th edn. Spon Press, London
Simon A, Pollen N, Langendoen E (2006) Influence of two woody riparian species on critical conditions for streambank stability: Upper Truckee River, California. J Am Water Resour Assoc 42:99–113 DOI: 10.1111/j.1752-1688.2006.tb03826.x
Singh R, Rishi MS, Sidhu N (2016) an overview of environmental impacts of riverbed Mining in Himalayan Terrain of Himachal Pradesh. J Appl Geochem 18:473–479
Soleimani-Ahmadi M, Vatandoost H, Hanafi-Bojd AA et al (2013) Environmental characteristics of anopheline mosquito larval habitats in a malaria endemic area in Iran. Asian Pac J Trop Med 6:510–515. 10.1016/S1995-7645(13)60087-5 DOI: 10.1016/S1995-7645(13)60087-5
Stella JC, Riddle J, Piégay H et al (2013) Climate and local geomorphic interactions drive patterns of riparian forest decline along a Mediterranean Basin river. Geomorphology 202:101–114. 10.1016/j.geomorph.2013.01.013 DOI: 10.1016/j.geomorph.2013.01.013
Surian N, Rinaldi M (2002) Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 50:307–326. 10.1016/s0169-555x(02)00219-2 DOI: 10.1016/s0169-555x(02)00219-2
Swanson AC, Bohlman S (2021) Cumulative impacts of land cover change and dams on the land-water interface of the Tocantins River. Front Environ Sci 9:1–13. 10.3389/fenvs.2021.662904 DOI: 10.3389/fenvs.2021.662904
Tabacchi E, Lambs L, Guilloy H et al (2000) Impacts of riparian vegetation on hydrological processes. Hydrol Process 14:2959–2976 DOI: 10.1002/1099-1085(200011/12)14:16/17<2959::AID-HYP129>3.0.CO;2-B
Terui A, Akasaka T, Negishi JN et al (2017) Species-specific use of allochthonous resources by ground beetles (Carabidae) at a river–land interface. Ecol Res 32:27–35. 10.1007/s11284-016-1413-4 DOI: 10.1007/s11284-016-1413-4
Thorp JH, Thoms MC, Delong MD (2006) The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res Appl 22:123–147 DOI: 10.1002/rra.901
Tonkin JD, Stoll S, Jähnig SC, Haase P (2016) Anthropogenic land-use stress alters community concordance at the river-riparian interface. Ecol Indic 65:133–141. 10.1016/j.ecolind.2015.08.037 DOI: 10.1016/j.ecolind.2015.08.037
Torres A, Brandt J, Lear K, Liu J (2017) A looming tragedy of the sand commons. Science (80-) 357:970–971. 10.1126/science.aao0503 DOI: 10.1126/science.aao0503
United Nations (2019) World urbanization prospects: the 2018 revision (ST/ESA/SER.A/420). United Nations, New York
Van Vliet MTH, Franssen WHP, Yearsley JR et al (2013) Global river discharge and water temperature under climate change. Glob Environ Chang 23:450–464. 10.1016/j.gloenvcha.2012.11.002 DOI: 10.1016/j.gloenvcha.2012.11.002
Van Manh N, Dung NV, Hung NN et al (2015) Future sediment dynamics in the Mekong Delta floodplains: impacts of hydropower development, climate change and sea level rise. Glob Planet Change 127:22–33. 10.1016/j.gloplacha.2015.01.001 DOI: 10.1016/j.gloplacha.2015.01.001
Vercruysse K, Grabowski RC (2021) Human-induced geomorphological impact within the context of multi-timescale river channel dynamics in a Himalayan river system. Geomorphology 381:107659. 10.1016/j.geomorph.2021.107659 DOI: 10.1016/j.geomorph.2021.107659
Vercruysse et al (In review) Placed-based interpretation of the Sustainable Development Goals for the land-river interface. 10.1007/s11625-022-01176-1
Vietz GJ, Walsh CJ, Fletcher TD (2016) Urban hydrogeomorphology and the urban stream syndrome. Prog Phys Geogr Earth Environ 40:480–492. 10.1177/0309133315605048 DOI: 10.1177/0309133315605048
Walsh CJ, Fletcher TD, Vietz GJ (2016) Variability in stream ecosystem response to urbanization. Prog Phys Geogr Earth Environ 40:714–731. 10.1177/0309133316671626 DOI: 10.1177/0309133316671626
Walter RC, Merritts DJ (2008) Natural streams and the legacy of water-powered mills. Science (80-) 319:299–304. 10.1126/science.1151716 DOI: 10.1126/science.1151716
Wilkes MA, Gittins JR, Mathers KL et al (2019) Physical and biological controls on fine sediment transport and storage in rivers. Wires Water 6:e1331. 10.1002/wat2.1331 DOI: 10.1002/wat2.1331
Wohl E (2014) A legacy of absence: wood removal in US rivers. Prog Phys Geogr 38:637–663. 10.1177/0309133314548091 DOI: 10.1177/0309133314548091
Wohl E (2015) Legacy effects on sediments in river corridors. Earth-Sci Rev 147:30–53. 10.1016/j.earscirev.2015.05.001 DOI: 10.1016/j.earscirev.2015.05.001
Wohl E (2016) Spatial heterogeneity as a component of river geomorphic complexity. Prog Phys Geogr 40:598–615. 10.1177/0309133316658615 DOI: 10.1177/0309133316658615
Wohl E (2019) Forgotten legacies: understanding and mitigating historical human alterations of river corridors. Water Resour Res 55:5181–5201. 10.1029/2018WR024433 DOI: 10.1029/2018WR024433
Wohl E, Beckman ND (2014) Leaky rivers: Implications of the loss of longitudinal fluvial disconnectivity in headwater streams. Geomorphology 205:27–35. 10.1016/j.geomorph.2011.10.022 DOI: 10.1016/j.geomorph.2011.10.022
Wohl E, Bledsoe BP, Jacobson RB et al (2015) The natural sediment regime in rivers: broadening the foundation for ecosystem management. Bioscience 65:358–371. 10.1093/biosci/biv002 DOI: 10.1093/biosci/biv002
Zarfl C, Lumsdon AE, Berlekamp J et al (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170. 10.1007/s00027-014-0377-0 DOI: 10.1007/s00027-014-0377-0