External fields; Lattice Boltzmann method; Lower frequencies; Magnetic contribution; Magnetic force; Maximum velocity; Swimmer motions; Biotechnology; Biophysics; Chemistry (all); Materials Science (all); Surfaces and Interfaces; General Materials Science; General Chemistry
Abstract :
[en] The dynamics of a triangular magnetocapillary swimmer is studied using the lattice Boltzmann method. We extend on our previous work, which deals with the self-assembly and a specific type of the swimmer motion characterized by the swimmer's maximum velocity centred around the particle's inverse viscous time. Here, we identify additional regimes of motion. First, modifying the ratio of surface tension and magnetic forces allows to study the swimmer propagation in the regime of significantly lower frequencies mainly defined by the strength of the magnetocapillary potential. Second, introducing a constant magnetic contribution in each of the particles in addition to their magnetic moment induced by external fields leads to another regime characterized by strong in-plane swimmer reorientations that resemble experimental observations.
Disciplines :
Physics
Author, co-author :
Sukhov, Alexander ; Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Straße 248, 90429, Nuremberg, Germany. a.sukhov@fz-juelich.de
Hubert, Maxime ; PULS Group, Department of Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
Grosjean, Galien ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; IST Austria, Lab Building West, Am Campus 1, 3400, Klosterneuburg, Austria
Trosman, Oleg; PULS Group, Department of Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
Ziegler, Sebastian; PULS Group, Department of Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
Collard, Ylona ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Vandewalle, Nicolas ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Smith, Ana-Sunčana ; PULS Group, Department of Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany ; Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, P.P. 180, Zagreb, 10002, Croatia
Harting, Jens ; Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Straße 248, 90429, Nuremberg, Germany ; Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429, Nuremberg, Germany
Language :
English
Title :
Regimes of motion of magnetocapillary swimmers.
Publication date :
24 April 2021
Journal title :
European Physical Journal E. Soft Matter
ISSN :
1292-8941
eISSN :
1292-895X
Publisher :
Springer Science and Business Media Deutschland GmbH, France
This work was financially supported by the DFG Priority Programme SPP 1726 “Microswimmers–From Single Particle Motion to Collective Behaviour” (HA 4382/5-1). We further acknowledge the Jülich Supercomputing Centre (JSC) and the High Performance Computing Centre Stuttgart (HLRS) for the allocation of computing time.
E.M. Purcell, Am. J. Phys. 45(1), 3–11 (1977) DOI: 10.1119/1.10903
M. Medina-Sanchez, O.G. Schmidt, Nature 545, 406 (2017)
J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015) DOI: 10.1088/0034-4885/78/5/056601
B. Friedrich, F. Jülicher, Proc. Nat. Acad. Sci. 104, 13256 (2007) DOI: 10.1073/pnas.0703530104
A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004) DOI: 10.1103/PhysRevE.69.062901
R. Golestanian, A. Ajdari, Phys. Rev. E 77, 036308 (2008) DOI: 10.1103/PhysRevE.77.036308
F. Martinez-Pedrero, A. Ortiz-Ambriz, I. Pagonabarraga, P. Tierno, Phys. Rev. Lett. 115, 138301 (2015) DOI: 10.1103/PhysRevLett.115.138301
J.R. Gomez-Solano, A. Blokhuis, C. Bechinger, Phys. Rev. Lett. 116, 138301 (2016) DOI: 10.1103/PhysRevLett.116.138301
R. Soto, R. Golestanian, Phys. Rev. E 91, 052304 (2015) DOI: 10.1103/PhysRevE.91.052304
B. Liebchen, P. Monderkamp, B. Hagen, H. Löwen, Phys. Rev. Lett. 120, 208002 (2018) DOI: 10.1103/PhysRevLett.120.208002
F. Rühle, H. Stark, Eur. Phys. J. E 43, 26 (2020) DOI: 10.1140/epje/i2020-11949-8
M. Yang, A. Wysocki, M. Ripoll, Soft Matter 10, 6208 (2014) DOI: 10.1039/C4SM00621F
D. Ahmed, T. Baasch, N. Blondel, N. Läubli, J. Dual, B.J. Nelson, Nat. Commun. 8, 770 (2017) DOI: 10.1038/s41467-017-00845-5
G. Grosjean, M. Hubert, G. Lagubeau, N. Vandewalle, Phys. Rev. E 94, 021101R (2016). https://doi.org/10.1103/PhysRevE.94.021101
G. Grosjean, G. Lagubeau, A. Darras, M. Hubert, G. Lumay, N. Vandewalle, Sci. Rep. 5, 16035 (2015) DOI: 10.1038/srep16035
G. Grosjean, M. Hubert, Y. Collard, A. Sukhov, J. Harting, A.-S. Smith, N. Vandewalle, Soft Matter 15, 9093 (2019)
G. Grosjean, M. Hubert, N. Vandewalle, Adv. Coll. Int.Sci. 255, 84–93 (2018)
M.S. Rizvi, A. Farutin, C. Misbah, Phys. Rev. E 97, 023102 (2018) DOI: 10.1103/PhysRevE.97.023102
M.S. Rizvi, A. Farutin, C. Misbah, Phys. Rev. E 98, 043104 (2018) DOI: 10.1103/PhysRevE.98.043104
S. Ziegler, M. Hubert, N. Vandewalle, J. Harting, A.-S. Smith, New J. Phys. 21, 113017 (2019) DOI: 10.1088/1367-2630/ab4fc2
A. Sukhov, S. Ziegler, Q. Xie, O. Trosman, J. Pande, G. Grosjean, M. Hubert, N. Vandewalle, A.-S. Smith, J. Harting, J. Chem. Phys. 151, 124707 (2019) DOI: 10.1063/1.5116860
R. Benzi, S. Succi, M. Vergassola, Phys. Rep. 222, 145 (1992) DOI: 10.1016/0370-1573(92)90090-M
Y.H. Qian, D. D’Humières, P. Lallemand, Europhys. Lett. 17, 479–484 (1992) DOI: 10.1209/0295-5075/17/6/001