[en] MRI is the first-choice imaging technique for brain tumors. Positron emission tomography can be combined together with multiparametric MRI to increase diagnostic confidence. Radiolabeled amino acids have gained wide clinical acceptance. The reported pooled specificity of [18F]FDG positron emission tomography is high and [18F]FDG might still be the first-choice positron emission tomography tracer in cases of World Health Organization grade 3 to 4 gliomas or [18F]FDG-avid tumors, avoiding the use of more expensive and less available radiolabeled amino acids. The present review discusses the additional value of positron emission tomography with a focus on [18F]FDG and radiolabeled amino acids.
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
WITHOFS, Nadia ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de médecine nucléaire et imagerie onco
Kumar, Rakesh; Diagnostic Nuclear Medicine Division, All India Institute of Medical Sciences, New Delhi 110029, India
Alavi, Abass; Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
HUSTINX, Roland ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de médecine nucléaire et imagerie onco
Language :
English
Title :
Facts and Fictions About [18F]FDG versus Other Tracers in Managing Patients with Brain Tumors: It Is Time to Rectify the Ongoing Misconceptions.
Miller, K.D., Ostrom, Q.T., Kruchko, C., et al. Brain and other central nervous system tumor statistics. CA Cancer J Clin 71:5 (2021), 381–406.
Louis, D.N., Perry, A., Wesseling, P., et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:8 (2021), 1231–1251.
Leeper, H.E., Caron, A.A., Decker, P.A., et al. IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas. Oncotarget 6:30 (2015), 30295–30305.
Weller, M., van den Bent, M., Preusser, M., et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18:3 (2021), 170–186.
Ellingson, B.M., Wen, P.Y., Cloughesy, T.F., Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics 14:2 (2017), 307–320.
Nabors, L.B., Portnow, J., Ahluwalia, M., et al. Central nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 18:11 (2020), 1537–1570.
Le Rhun, E., Guckenberger, M., Smits, M., et al. EANO-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with brain metastasis from solid tumours. Ann Oncol 32:11 (2021), 1332–1347.
Wen PYC, S.M., Van den Bent, M.J., Vogelbaum, M.A., et al. Response assessment in neuro-oncology clinical trials. J Clin Oncol 35:21 (2017), 2439–2449.
Krabbe KG, P., Wagn, P., Hansen, U., et al. MR diffusion imaging of human intracranial tumours. Neuroradiology 39:7 (1997), 483–489.
Hu, R., Hoch, M.J., Application of diffusion weighted imaging and diffusion tensor imaging in the pretreatment and post-treatment of brain tumor. Radiol Clin North Am 59:3 (2021), 335–347.
Smits, M., Imaging of oligodendroglioma. Br J Radiol, 89(1060), 2016, 20150857.
Overcast, W.B., Davis, K.M., Ho, C.Y., et al. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep, 23(3), 2021, 34.
Law, M., Yang, S., Wang, H., et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:10 (2003), 1989–1998.
van Dijken, B.R.J., van Laar, P.J., Holtman, G.A., et al. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur Radiol 27:10 (2017), 4129–4144.
Kaufmann, T.J., Smits, M., Boxerman, J., et al. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro Oncol 22:6 (2020), 757–772.
van Dijken, B.R.J., van Laar, P.J., Smits, M., et al. Perfusion MRI in treatment evaluation of glioblastomas: clinical relevance of current and future techniques. J Magn Reson Imaging 49:1 (2019), 11–22.
Thust, S.C., Heiland, S., Falini, A., et al. Glioma imaging in Europe: a survey of 220 centres and recommendations for best clinical practice. Eur Radiol 28:8 (2018), 3306–3317.
Albert, N.L., Weller, M., Suchorska, B., et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 18:9 (2016), 1199–1208.
Cooney, T.M., Cohen, K.J., Guimaraes, C.V., et al. Response assessment in diffuse intrinsic pontine glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. The Lancet Oncol 21:6 (2020), e330–e336.
Fangusaro, J., Witt, O., Hernáiz Driever, P., et al. Response assessment in paediatric low-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. The Lancet Oncol 21:6 (2020), e305–e316.
Bi, J., Chowdhry, S., Wu, S., et al. Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets. Nat Rev Cancer 20:1 (2020), 57–70.
Borja, A.J., Hancin, E.C., Raynor, W.Y., et al. A critical review of PET tracers used for brain tumor imaging. PET Clin 16:2 (2021), 219–231.
Patching, S.G., Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol 54:2 (2017), 1046–1077.
Herholz, K., Brain tumors: an update on clinical PET research in gliomas. Semin Nucl Med 47:1 (2017), 5–17.
Flavahan, W.A., Wu, Q., Hitomi, M., et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci 16:10 (2013), 1373–1382.
Law, I., Albert, N.L., Arbizu, J., et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 46:3 (2019), 540–557.
Toyonaga, T., Yamaguchi, S., Hirata, K., et al. Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor. Eur J Nucl Med Mol Imaging 44:4 (2017), 611–619.
Delbeke, D., Meyerowitz, C., Lapidus, R.L., et al. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195:1 (1995), 47–52.
Borgwardt, L., Hojgaard, L., Carstensen, H., et al. Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 23:13 (2005), 3030–3037.
Manabe, O., Hattori, N., Yamaguchi, S., et al. Oligodendroglial component complicates the prediction of tumour grading with metabolic imaging. Eur J Nucl Med Mol Imaging 42:6 (2015), 896–904.
Dunet, V., Pomoni, A., Hottinger, A., et al. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol 18:3 (2016), 426–434.
Cecchin, D., Garibotto, V., Law, I., et al. PET imaging in neurodegeneration and neuro-oncology: variants and pitfalls. Semin Nucl Med 51:5 (2021), 408–418.
Krebs, S., Mauguen, A., Yildirim, O., et al. Prognostic value of [18F]FDG PET/CT in patients with CNS lymphoma receiving ibrutinib-based therapies. Eur J Nucl Med Mol Imaging 48:12 (2021), 3940–3950.
Chiang, G.C., Galla, N., Ferraro, R., et al. The added prognostic value of metabolic tumor size on FDG-PET at first suspected recurrence of glioblastoma multiforme. J Neuroimaging 27:2 (2017), 243–247.
Galldiks, N., Niyazi, M., Grosu, A.L., et al. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro Oncol 23:6 (2021), 881–893.
Pirotte, B., Goldman, S., Massager, N., et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45:8 (2004), 1293–1298.
Pirotte, B.J., Lubansu, A., Massager, N., et al. Clinical impact of integrating positron emission tomography during surgery in 85 children with brain tumors. J Neurosurg Pediatr 5:5 (2010), 486–499.
McCullough, B.J., Ader, V., Aguedan, B., et al. Preoperative relative cerebral blood volume analysis in gliomas predicts survival and mitigates risk of biopsy sampling error. J Neurooncol 136:1 (2018), 181–188.
Petrella, J.R., Provenzale, J.M., MR perfusion imaging of the brain: techniques and applications. AJR Am J Roentgenol 175:1 (2000), 207–219.
Malani, R., Bhatia, A., Wolfe, J., et al. Staging identifies non-CNS malignancies in a large cohort with newly diagnosed lymphomatous brain lesions. Leuk Lymphoma 60:9 (2019), 2278–2282.
Galldiks, N., Langen, K.J., Albert, N.L., et al. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol 21:5 (2019), 585–595.
Brandes, A.A., Franceschi, E., Tosoni, A., et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:13 (2008), 2192–2197.
Nihashi, T., Dahabreh, I.J., Terasawa, T., Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol 34:5 (2013), 944–950 S941-S911.
de Zwart, P.L., van Dijken, B.R.J., Holtman, G.A., et al. Diagnostic Accuracy of PET tracers for the differentiation of tumor progression from treatment-related changes in high-grade glioma: a systematic review and metaanalysis. J Nucl Med 61:4 (2020), 498–504.
Cui, M., Zorrilla-Veloz, R.I., Hu, J., et al. Diagnostic accuracy of pet for differentiating true glioma progression from post treatment-related changes: a systematic review and meta-analysis. Front Neurol, 12, 2021, 671867.
Dankbaar, J.W., Snijders, T.J., Robe, P.A., et al. The use of (18)F-FDG PET to differentiate progressive disease from treatment induced necrosis in high grade glioma. J Neurooncol 125:1 (2015), 167–175.
Jena, A., Taneja, S., Jha, A., et al. Multiparametric evaluation in differentiating glioma recurrence from treatment-induced necrosis using simultaneous (18)F-FDG-PET/MRI: a single-institution retrospective study. AJNR Am J Neuroradiol 38:5 (2017), 899–907.
Hojjati, M., Badve, C., Garg, V., et al. Role of FDG-PET/MRI, FDG-PET/CT, and dynamic susceptibility contrast perfusion MRI in differentiating radiation necrosis from tumor recurrence in glioblastomas. J Neuroimaging 28:1 (2018), 118–125.
Lilja, A., Bergstrom, K., Hartvig, P., et al. Dynamic study of supratentorial gliomas with L-methyl-11C-methionine and positron emission tomography. AJNR Am J Neuroradiol 6:4 (1985), 505–514.
Huttunen, J., Peltokangas, S., Gynther, M., et al. L-Type Amino Acid Transporter 1 (LAT1/Lat1)-utilizing prodrugs can improve the delivery of drugs into neurons, astrocytes and microglia. Sci Rep, 9(1), 2019, 12860.
Meyer, G.J., Schober, O., Hundeshagen, H., Uptake of 11C-L- and D-methionine in brain tumors. Eur J Nucl Med 10:7–8 (1985), 373–376.
Kim, D., Chun, J.H., Kim, S.H., et al. Re-evaluation of the diagnostic performance of (11)C-methionine PET/CT according to the 2016 WHO classification of cerebral gliomas. Eur J Nucl Med Mol Imaging 46:8 (2019), 1678–1684.
Okubo, S., Zhen, H.N., Kawai, N., et al. Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas. J Neurooncol 99:2 (2010), 217–225.
Kracht, L.W., Friese, M., Herholz, K., et al. Methyl-[11C]- l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:6 (2003), 868–873.
Glaudemans, A.W., Enting, R.H., Heesters, M.A., et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging 40:4 (2013), 615–635.
Herholz, K., Holzer, T., Bauer, B., et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:5 (1998), 1316–1322.
Stober, B., Tanase, U., Herz, M., et al. Differentiation of tumour and inflammation: characterisation of [methyl-3H]methionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur J Nucl Med Mol Imaging 33:8 (2006), 932–939.
Salber, D., Stoffels, G., Oros-Peusquens, A.M., et al. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine and L-3H-methionine uptake in cerebral hematomas. J Nucl Med 51:5 (2010), 790–797.
Nakajima, R., Kimura, K., Abe, K., et al. 11)C-methionine PET/CT findings in benign brain disease. Jpn J Radiol 35:6 (2017), 279–288.
Van Laere, K., Ceyssens, S., Van Calenbergh, F., et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32:1 (2005), 39–51.
Jansen, N.L., Graute, V., Armbruster, L., et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET?. Eur J Nucl Med Mol Imaging 39:6 (2012), 1021–1029.
Ishiwata, K., Vaalburg, W., Elsinga, P.H., et al. Comparison of L-[1-11C]methionine and L-methyl-[11C]methionine for measuring in vivo protein synthesis rates with PET. J Nucl Med 29:8 (1988), 1419–1427.
Wester, H.J., Herz, M., Weber, W., et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40:1 (1999), 205–212.
Heiss, P., Mayer, S., Herz, M., et al. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 40:8 (1999), 1367–1373.
Grosu, A.L., Astner, S.T., Riedel, E., et al. An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys 81:4 (2011), 1049–1058.
Hutterer, M., Nowosielski, M., Putzer, D., et al. [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol 15:3 (2013), 341–351.
Lohaus, N., Mader, C., Jelcic, I., et al. Acute Disseminated Encephalomyelitis in FET PET/MR. Clin Nucl Med 47:2 (2022), e137–e139.
Yamada, Y., Uchida, Y., Tatsumi, K., et al. Fluorine-18-fluorodeoxyglucose and carbon-11-methionine evaluation of lymphadenopathy in sarcoidosis. J Nucl Med 39:7 (1998), 1160–1166.
Sasaki, M., Ichiya, Y., Kuwabara, Y., et al. Hyperperfusion and hypermetabolism in brain radiation necrosis with epileptic activity. J Nucl Med 37:7 (1996), 1174–1176.
Sasaki, M., Kuwabara, Y., Yoshida, T., et al. Carbon-11-methionine PET in focal cortical dysplasia: a comparison with fluorine-18-FDG PET and technetium-99m-ECD SPECT. J Nucl Med 39:6 (1998), 974–977.
Hutterer, M., Ebner, Y., Riemenschneider, M.J., et al. Epileptic activity increases cerebral amino acid transport assessed by 18F-Fluoroethyl-l-Tyrosine amino acid PET: a potential brain tumor mimic. J Nucl Med 58:1 (2017), 129–137.
Rapp, M., Heinzel, A., Galldiks, N., et al. Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med 54:2 (2013), 229–235.
Floeth, F.W., Pauleit, D., Sabel, M., et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 48:4 (2007), 519–527.
Albert, N.L., Winkelmann, I., Suchorska, B., et al. Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans. Eur J Nucl Med Mol Imaging 43:6 (2016), 1105–1114.
Ewelt, C., Floeth, F.W., Felsberg, J., et al. Finding the anaplastic focus in diffuse gliomas: the value of Gd-DTPA enhanced MRI, FET-PET, and intraoperative, ALA-derived tissue fluorescence. Clin Neurol Neurosurg 113:7 (2011), 541–547.
Scott, J.N., Brasher, P.M., Sevick, R.J., et al. How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59:6 (2002), 947–949.
Popperl, G., Kreth, F.W., Mehrkens, J.H., et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:12 (2007), 1933–1942.
Langen, K.J., Stoffels, G., Filss, C., et al. Imaging of amino acid transport in brain tumours: positron emission tomography with O-(2-[(18)F]fluoroethyl)-L-tyrosine (FET). Methods 130 (2017), 124–134.
Richard, M.A., Fouquet, J.P., Lebel, R., et al. Determination of an Optimal Pharmacokinetic Model of (18)F-FET for quantitative applications in rat brain tumors. J Nucl Med 58:8 (2017), 1278–1284.
Gottler, J., Lukas, M., Kluge, A., et al. Intra-lesional spatial correlation of static and dynamic FET-PET parameters with MRI-based cerebral blood volume in patients with untreated glioma. Eur J Nucl Med Mol Imaging 44:3 (2017), 392–397.
Bashir, A., Brennum, J., Broholm, H., et al. The diagnostic accuracy of detecting malignant transformation of low-grade glioma using O-(2-[18F]fluoroethyl)-l-tyrosine positron emission tomography: a retrospective study. J Neurosurg 130:2 (2018), 451–464.
Galldiks, N., Stoffels, G., Ruge, M.I., et al. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med 54:12 (2013), 2046–2054.
Lohmann, P., Stavrinou, P., Lipke, K., et al. FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 46:3 (2019), 591–602.
Song, S., Cheng, Y., Ma, J., et al. Simultaneous FET-PET and contrast-enhanced MRI based on hybrid PET/MR improves delineation of tumor spatial biodistribution in gliomas: a biopsy validation study. Eur J Nucl Med Mol Imaging 47:6 (2020), 1458–1467.
Verburg, N., Koopman, T., Yaqub, M.M., et al. Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study. Neuro Oncol 22:3 (2020), 412–422.
Hirata, T., Kinoshita, M., Tamari, K., et al. 11C-methionine-18F-FDG dual-PET-tracer-based target delineation of malignant glioma: evaluation of its geometrical and clinical features for planning radiation therapy. J Neurosurg 131:3 (2019), 676–686.
Poulsen, S.H., Urup, T., Grunnet, K., et al. The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 44:3 (2017), 373–381.
Kunz, M., Albert, N.L., Unterrainer, M., et al. Dynamic 18F-FET PET is a powerful imaging biomarker in gadolinium-negative gliomas. Neuro Oncol 21:2 (2019), 274–284.
Molinaro, A.M., Hervey-Jumper, S., Morshed, R.A., et al. Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol 6:4 (2020), 495–503.
Suchorska, B., Jansen, N.L., Linn, J., et al. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 84:7 (2015), 710–719.
Bette, S., Peschke, P., Kaesmacher, J., et al. Static FET-PET and MR imaging in anaplastic gliomas (WHO III). World Neurosurg 91 (2016), 524–531 e521.
Holzgreve, A., Albert, N.L., Galldiks, N., et al. Use of PET Imaging in neuro-oncological surgery. Cancers (Basel), 13(9), 2021, 2093.
Floeth, F.W., Sabel, M., Ewelt, C., et al. Comparison of (18)F-FET PET and 5-ALA fluorescence in cerebral gliomas. Eur J Nucl Med Mol Imaging 38:4 (2011), 731–741.
Werner, J.M., Weller, J., Ceccon, G., et al. Diagnosis of pseudoprogression following lomustine-temozolomide chemoradiation in newly diagnosed glioblastoma patients using FET-PET. Clin Cancer Res 27:13 (2021), 3704–3713.
Galldiks, N., Dunkl, V., Stoffels, G., et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging 42:5 (2015), 685–695.
Werner, J.M., Stoffels, G., Lichtenstein, T., et al. Differentiation of treatment-related changes from tumour progression: a direct comparison between dynamic FET PET and ADC values obtained from DWI MRI. Eur J Nucl Med Mol Imaging 46:9 (2019), 1889–1901.
Kebir, S., Fimmers, R., Galldiks, N., et al. Late pseudoprogression in glioblastoma: diagnostic value of dynamic O-(2-[18F]fluoroethyl)-L-Tyrosine PET. Clin Cancer Res 22:9 (2016), 2190–2196.
Bashir, A., Mathilde Jacobsen, S., Molby Henriksen, O., et al. Recurrent glioblastoma versus late posttreatment changes: diagnostic accuracy of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (18F-FET PET). Neuro Oncol 21:12 (2019), 1595–1606.
Galldiks, N., Stoffels, G., Filss, C.P., et al. Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med 53:9 (2012), 1367–1374.
Heiss, W.D., Wienhard, K., Wagner, R., et al. F-Dopa as an amino acid tracer to detect brain tumors. J Nucl Med 37:7 (1996), 1180–1182.
Chen, W., Silverman, D.H., Delaloye, S., et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:6 (2006), 904–911.
Huang, S.C., Yu, D.C., Barrio, J.R., et al. Kinetics and modeling of L-6-[18F]fluoro-dopa in human positron emission tomographic studies. J Cereb Blood Flow Metab 11:6 (1991), 898–913.
Tatekawa, H., Hagiwara, A., Yao, J., et al. Voxelwise and patientwise correlation of (18)F-FDOPA PET, relative cerebral blood volume, and apparent diffusion coefficient in treatment-naive diffuse gliomas with different molecular subtypes. J Nucl Med 62:3 (2021), 319–325.
Jena, A., Taneja, S., Khan, A.A., et al. Recurrent glioma: does qualitative simultaneous 18F-DOPA PET/mp-MRI improve diagnostic workup? An initial Experience. Clin Nucl Med 46:9 (2021), 703–709.
Shoup, T.M., Olson, J., Hoffman, J.M., et al. Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med 40:2 (1999), 331–338.
Michaud, L., Beattie, B.J., Akhurst, T., et al. 18)F-Fluciclovine ((18)F-FACBC) PET imaging of recurrent brain tumors. Eur J Nucl Med Mol Imaging 47:6 (2020), 1353–1367.
Laudicella, R., Quartuccio, N., Argiroffi, G., et al. Unconventional non-amino acidic PET radiotracers for molecular imaging in gliomas. Eur J Nucl Med Mol Imaging 48:12 (2021), 3925–3939.
Ruan, S., Zhou, Y., Jiang, X., et al. Rethinking CRITID Procedure of Brain targeting drug delivery: circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Adv Sci (Weinh), 8(9), 2021, 2004025.
Pike, V.W., PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci 30:8 (2009), 431–440.
Rohrich, M., Loktev, A., Wefers, A.K., et al. IDH-wildtype glioblastomas and grade III/IV IDH-mutant gliomas show elevated tracer uptake in fibroblast activation protein-specific PET/CT. Eur J Nucl Med Mol Imaging 46:12 (2019), 2569–2580.
Vettermann, F.J., Harris, S., Schmitt, J., et al. Impact of TSPO receptor Polymorphism on [(18)F]GE-180 binding in healthy brain and Pseudo-reference regions of Neurooncological and Neurodegenerative Disorders. Life (Basel), 11(6), 2021, 484.
Salas Fragomeni, R.A., Menke, J.R., Holdhoff, M., et al. Prostate-specific membrane antigen-targeted imaging with [18F]DCFPyL in high-grade gliomas. Clin Nucl Med 42:10 (2017), e433–e435.
Verma, P., Malhotra, G., Goel, A., et al. Differential uptake of 68Ga-PSMA-HBED-CC (PSMA-11) in low-grade versus high-grade gliomas in treatment-Naive patients. Clin Nucl Med 44:5 (2019), e318–e322.
Liu, D., Cheng, G., Ma, X., et al. PET/CT using (68) Ga-PSMA-617 versus (18) F-fluorodeoxyglucose to differentiate low- and high-grade gliomas. J Neuroimaging 31:4 (2021), 733–742.
Holzgreve, A., Biczok, A., Ruf, V.C., et al. PSMA Expression in Glioblastoma as a basis for theranostic approaches: a retrospective, correlational panel study including immunohistochemistry, clinical parameters and PET Imaging. Front Oncol, 11, 2021, 646387.
Andrei Iagaru, M., Camila Mosci, M., Erik Mittra, M., et al. Glioblastoma multiforme recurrence: an Exploratory study of 18F FPPRGD2 PET/CT. Radiology 277:2 (2015), 497–506.
Santagata, S., Ierano, C., Trotta, A.M., et al. CXCR4 and CXCR7 signaling pathways: a focus on the cross-talk between cancer cells and tumor microenvironment. Front Oncol, 11, 2021, 591386.
Shooli, H., Nemati, R., Ahmadzadehfar, H., et al. Theranostics in brain tumors. PET Clin 16:3 (2021), 397–418.
Huang, X., Bai, H., Zhou, H., et al. Performance of 18F-FET-PET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: inherent bias in meta-analysis not revealed by quality metrics. Neuro Oncol, 18(7), 2016, 1028.
Furuse, M., Nonoguchi, N., Yamada, K., et al. Radiological diagnosis of brain radiation necrosis after cranial irradiation for brain tumor: a systematic review. Radiat Oncol, 14(1), 2019, 28.
Seidlitz, A., Beuthien-Baumann, B., Lock, S., et al. Final results of the prospective biomarker trial PETra: [(11)C]-MET-Accumulation in Postoperative PET/MRI predicts outcome after radiochemotherapy in glioblastoma. Clin Cancer Res 27:5 (2021), 1351–1360.
Mittlmeier, L.M., Suchorska, B., Ruf, V., et al. (18)F-FET PET uptake characteristics of long-term IDH-wildtype diffuse glioma Survivors. Cancers (Basel), 13(13), 2021.
Lundemann, M., Munck, Af, Rosenschold, P., et al. Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma. Eur J Nucl Med Mol Imaging 46:3 (2019), 603–613.
Suchorska, B., Giese, A., Biczok, A., et al. Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro Oncol 20:2 (2018), 279–288.
Galldiks, N., Dunkl, V., Ceccon, G., et al. Early treatment response evaluation using FET PET compared to MRI in glioblastoma patients at first progression treated with bevacizumab plus lomustine. Eur J Nucl Med Mol Imaging 45:13 (2018), 2377–2386.
Oen, S.K., Aasheim, L.B., Eikenes, L., et al. Image quality and detectability in Siemens Biograph PET/MRI and PET/CT systems-a phantom study. EJNMMI Phys, 6(1), 2019, 16.
Lohmann, P., Galldiks, N., Kocher, M., et al. Radiomics in neuro-oncology: basics, workflow, and applications. Methods 188 (2021), 112–121.
Pirotte, B., Goldman, S., Massager, N., et al. Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg 101:3 (2004), 476–483.