Akella S. Ma X. Bacova R. Harmer Z. P. Kolackova M. Wen X. et al. (2021). Co-targeting strategy for precise, scarless gene editing with CRISPR/Cas9 and donor ssODNs in Chlamydomonas. Plant Physiol. 187, 2637–2655. doi: 10.1093/plphys/kiab418, PMID: 34618092
Angstenberger M. de Signori F. Vecchi V. Dall’Osto L. Bassi R. (2020). Cell synchronization enhances nuclear transformation and genome editing via Cas9 enabling homologous recombination in Chlamydomonas reinhardtii. ACS Synth. Biol. 9, 2840–2850. doi: 10.1021/acssynbio.0c00390, PMID: 32916053
Baek K. Kim D. H. Jeong J. Sim S. J. Melis A. Kim J.-S. et al. (2016). DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 6:30620. doi: 10.1038/srep30620, PMID: 27466170
Baier T. Jacobebbinghaus N. Einhaus A. Lauersen K. J. Kruse O. (2020). Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet. 16:e1008944. doi: 10.1371/journal.pgen.1008944, PMID: 32730252
Barahimipour R. Strenkert D. Neupert J. Schroda M. Merchant S. S. Bock R. (2015). Dissecting the contributions of GC content and codon usage to gene expression in the model alga Chlamydomonas reinhardtii. Plant J. 84, 704–717. doi: 10.1111/tpj.13033, PMID: 26402748
Berthold P. Schmitt R. Mages W. (2002). An engineered Streptomyces hygroscopicus aph7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153, 401–412. doi: 10.1078/14344610260450136, PMID: 12627869
Crozet P. Navarro F. J. Willmund F. Mehrshahi P. Bakowski K. Lauersen K. J. et al. (2018). Birth of a photosynthetic chassis: a MoClo toolkit enabling synthetic biology in the microalga Chlamydomonas reinhardtii. ACS Synth. Biol. 7, 2074–2086. doi: 10.1021/acssynbio.8b00251, PMID: 30165733
de Carpentier F. Le Peillet J. Boisset N. D. Crozet P. Lemaire S. D. Danon A. (2020). Blasticidin S Deaminase: a new efficient selectable marker for Chlamydomonas reinhardtii. Front. Plant Sci. 11:242. doi: 10.3389/fpls.2020.00242, PMID: 32211000
Debuchy R. Purton S. Rochaix J. D. (1989). The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 8, 2803–2809. doi: 10.1002/j.1460-2075.1989.tb08426.x, PMID: 2583083
Dementyeva P. Freudenberg R. A. Baier T. Rojek K. Wobbe L. Weisshaar B. et al. (2021). A novel, robust and mating-competent Chlamydomonas reinhardtii strain with an enhanced transgene expression capacity for algal biotechnology. Biotechnol. Rep. 31:e00644. doi: 10.1016/j.btre.2021.e00644, PMID: 34168966
Dhokane D. Bhadra B. Dasgupta S. (2020). CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein. Mol. Biol. Rep. 47, 8747–8755. doi: 10.1007/s11033-020-05922-5, PMID: 33074412
Durante L. Hübner W. Lauersen K. J. Remacle C. (2019). Characterization of the GPR1/FUN34/YaaH protein family in the green microalga Chlamydomonas suggests their role as intracellular membrane acetate channels. Plant Direct 3:e00148. doi: 10.1002/pld3.148, PMID: 31245784
Einhaus A. Baier T. Rosenstengel M. Freudenberg R. A. Kruse O. (2021). Rational promoter engineering enables robust terpene production in microalgae. ACS Synth. Biol. 10, 847–856. doi: 10.1021/acssynbio.0c00632, PMID: 33764741
Fischer N. Rochaix J.-D. (2001). The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol. Gen. Genomics. 265, 888–894. doi: 10.1007/s004380100485, PMID: 11523806
Freudenberg R. A. Baier T. Einhaus A. Wobbe L. Kruse O. (2021). High cell density cultivation enables efficient and sustainable recombinant polyamine production in the microalga Chlamydomonas reinhardtii. Bioresour. Technol. 323:124542. doi: 10.1016/j.biortech.2020.124542, PMID: 33385626
Fuhrmann M. Oertel W. Hegemann P. (1999). A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii+. Plant J. 19, 353–361. doi: 10.1046/j.1365-313X.1999.00526.x, PMID: 10476082
Geisler K. Scaife M. A. Mordaka P. M. Holzer A. Tomsett E. V. Mehrshahi P. et al. (2021). Exploring the impact of terminators on transgene expression in Chlamydomonas reinhardtii with a synthetic biology approach. Life 11:964. doi: 10.3390/life11090964, PMID: 34575113
Ghribi M. Nouemssi S. B. Meddeb-Mouelhi F. Desgagné-Penix I. (2020). Genome editing by CRISPR-Cas: a game change in the genetic manipulation of Chlamydomonas. Life 10:295. doi: 10.3390/life10110295, PMID: 33233548
Greiner A. Kelterborn S. Evers H. Kreimer G. Sizova I. Hegemann P. (2017). Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell 29, 2498–2518. doi: 10.1105/tpc.17.00659, PMID: 28978758
Guzmán-Zapata D. Sandoval-Vargas J. Macedo-Osorio K. Salgado-Manjarrez E. Castrejón-Flores J. Oliver-Salvador M. et al. (2019). Efficient editing of the nuclear APT reporter gene in Chlamydomonas reinhardtii via expression of a CRISPR-Cas9 module. Int. J. Mol. Sci. 20:1247. doi: 10.3390/ijms20051247, PMID: 30871076
Jaeger D. Baier T. Lauersen K. J. (2019). Intronserter, an advanced online tool for design of intron containing transgenes. Algal Res. 42:101588. doi: 10.1016/j.algal.2019.101588
Jiang W. Brueggeman A. J. Horken K. M. Plucinak T. M. Weeks D. P. (2014). Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot. Cell 13, 1465–1469. doi: 10.1128/EC.00213-14, PMID: 25239977
Jinkerson R. E. Jonikas M. C. (2015). Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J. 82, 393–412. doi: 10.1111/tpj.12801, PMID: 25704665
Kang S. Jeon S. Kim S. Chang Y. K. Kim Y.-C. (2020). Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii. Sci. Rep. 10:22158. doi: 10.1038/s41598-020-78968-x, PMID: 33335164
Kiefer A. Niemeyer J. Probst A. Erkel G. Schroda M. (2021). Production and secretion of functional full-length SARS-CoV-2 spike protein in Chlamydomonas reinhardtii. bioRxiv [Preprint]. doi: 10.1101/2021.12.13.472433
Kindle K. L. (1990). High frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A. 87, 1228–1232. doi: 10.1073/pnas.87.3.1228, PMID: 2105499
Kindle K. L. Schnell R. A. Fernandez E. Lefebvre P. A. (1989). Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J. Cell Biol. 109, 2589–2601. doi: 10.1083/jcb.109.6.2589, PMID: 2592399
Kong F. Yamaoka Y. Ohama T. Lee Y. Li-Beisson Y. (2019). Molecular genetic tools and emerging synthetic biology strategies to increase cellular oil content in Chlamydomonas reinhardtii. Plant Cell Physiol. 60, 1184–1196. doi: 10.1093/pcp/pcz022, PMID: 30715500
Lauersen K. J. Huber I. Wichmann J. Baier T. Leiter A. Gaukel V. et al. (2015). Investigating the dynamics of recombinant protein secretion from a microalgal host. J. Biotechnol. 215, 62–71. doi: 10.1016/j.jbiotec.2015.05.001, PMID: 25975624
Li X. Zhang R. Patena W. Gang S. S. Blum S. R. Ivanova N. et al. (2016). An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28, 367–387. doi: 10.1105/tpc.15.00465, PMID: 26764374
López-Paz C. Liu D. Geng S. Umen J. G. (2017). Identification of Chlamydomonas reinhardtii endogenous genic flanking sequences for improved transgene expression. Plant J. 92, 1232–1244. doi: 10.1111/tpj.13731, PMID: 28980350
Lumbreras V. Stevens D. R. Purton S. (1998). Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron: foreign gene expression in Chlamydomonas. Plant J. 14, 441–447. doi: 10.1046/j.1365-313X.1998.00145.x
Mathieu-Rivet E. Mati-Baouche N. Walet-Balieu M.-L. Lerouge P. Bardor M. (2020). N- and O-glycosylation pathways in the microalgae polyphyletic group. Front. Plant Sci. 11:609993. doi: 10.3389/fpls.2020.609993, PMID: 33391324
Mehrshahi P. Nguyen G. T. D. T. Gorchs Rovira A. Sayer A. Llavero-Pasquina M. Lim Huei Sin M. et al. (2020). Development of novel Riboswitches for synthetic biology in the Green alga Chlamydomonas. ACS Synth. Biol. 9, 1406–1417. doi: 10.1021/acssynbio.0c00082, PMID: 32496044
Merchant S. S. Prochnik S. E. Vallon O. Harris E. H. Karpowicz S. J. Witman G. B. et al. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245–250. doi: 10.1126/science.1143609, PMID: 17932292
Meslet-Cladière L. Vallon O. (2011). Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii. Eukaryot. Cell 10, 1670–1678. doi: 10.1128/EC.05043-11, PMID: 22002656
Neupert J. Gallaher S. D. Lu Y. Strenkert D. Segal N. Barahimipour R. et al. (2020). An epigenetic gene silencing pathway selectively acting on transgenic DNA in the green alga Chlamydomonas. Nat. Commun. 11:6269. doi: 10.1038/s41467-020-19983-4, PMID: 33293544
Neupert J. Karcher D. Bock R. (2009). Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J. 57, 1140–1150. doi: 10.1111/j.1365-313X.2008.03746.x, PMID: 19036032
Niemeyer J. Scheuring D. Oestreicher J. Morgan B. Schroda M. (2021). Real-time monitoring of subcellular H2O2 distribution in Chlamydomonas reinhardtii. Plant Cell 33, 2935–2949. doi: 10.1093/plcell/koab176, PMID: 34196712
Niemeyer J. Schroda M. (2022). New destination vectors facilitate modular cloning for Chlamydomonas. Curr. Genet. doi: 10.1007/s00294-022-01239-x [Epub ahead of print], PMID: 35429260
Patron N. J. Orzaez D. Marillonnet S. Warzecha H. Matthewman C. Youles M. et al. (2015). Standards for plant synthetic biology: a common syntax for exchange of DNA parts. New Phytol. 208, 13–19. doi: 10.1111/nph.13532, PMID: 26171760
Perozeni F. Cazzaniga S. Baier T. Zanoni F. Zoccatelli G. Lauersen K. J. et al. (2020). Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. Plant Biotechnol. J. 18, 2053–2067. doi: 10.1111/pbi.13364, PMID: 32096597
Picariello T. Hou Y. Kubo T. McNeill N. A. Yanagisawa H. Oda T. et al. (2020). TIM, a targeted insertional mutagenesis method utilizing CRISPR/Cas9 in Chlamydomonas reinhardtii. PLoS One 15:e0232594. doi: 10.1371/journal.pone.0232594, PMID: 32401787
Salomé P. A. Merchant S. S. (2019). A series of fortunate events: introducing Chlamydomonas as a reference organism. Plant Cell 31, 1682–1707. doi: 10.1105/tpc.18.00952, PMID: 31189738
Scaife M. A. Smith A. G. (2016). Towards developing algal synthetic biology. Biochem. Soc. Trans. 44, 716–722. doi: 10.1042/BST20160061, PMID: 27284033
Schroda M. (2019). Good news for nuclear transgene expression in Chlamydomonas. Cell 8:1534. doi: 10.3390/cells8121534, PMID: 31795196
Schroda M. Blocker D. Beck C. F. (2000). The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J. 21, 121–131. doi: 10.1046/j.1365-313x.2000.00652.x, PMID: 10743653
Scranton M. A. Ostrand J. T. Georgianna D. R. Lofgren S. M. Li D. Ellis R. C. et al. (2016). Synthetic promoters capable of driving robust nuclear gene expression in the green alga Chlamydomonas reinhardtii. Algal Res. 15, 135–142. doi: 10.1016/j.algal.2016.02.011
Shimogawara K. Fujiwara S. Grossman A. Usuda H. (1998). High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148, 1821–1828. doi: 10.1093/genetics/148.4.1821, PMID: 9560396
Shin S.-E. Lim J.-M. Koh H. G. Kim E. K. Kang N. K. Jeon S. et al. (2016). CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci. Rep. 6:27810. doi: 10.1038/srep27810, PMID: 27291619
Sizova I. Fuhrmann M. Hegemann P. (2001). A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277, 221–229. doi: 10.1016/s0378-1119(01)00616-3, PMID: 11602359
Song I. Kim J. Baek K. Choi Y. Shin B. Jin E. (2020). The generation of metabolic changes for the production of high-purity zeaxanthin mediated by CRISPR-Cas9 in Chlamydomonas reinhardtii. Microb. Cell Factories 19, 220. doi: 10.1186/s12934-020-01480-4, PMID: 33256757
Spaniol B. Lang J. Venn B. Schake L. Sommer F. Mustas M. et al. (2022). Complexome profiling on the Chlamydomonas lpa2 mutant reveals insights into PSII biogenesis and new PSII associated proteins. J. Exp. Bot. 73, 245–262. doi: 10.1093/jxb/erab390, PMID: 34436580
Stevens D. R. Rochaix J. D. Purton S. (1996). The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol. Gen. Genet. 251, 23–30. doi: 10.1007/BF02174340, PMID: 8628243
Theis J. Lang J. Spaniol B. Ferté S. Niemeyer J. Sommer F. et al. (2019). The Chlamydomonas deg1c mutant accumulates proteins involved in high light acclimation. Plant Physiol. 181, 1480–1497. doi: 10.1104/pp.19.01052, PMID: 31604811
Weber E. Engler C. Gruetzner R. Werner S. Marillonnet S. (2011). A modular cloning system for standardized assembly of multigene constructs. PLoS One 6:e16765. doi: 10.1371/journal.pone.0016765, PMID: 21364738
Weiner I. Atar S. Schweitzer S. Eilenberg H. Feldman Y. Avitan M. et al. (2018). Enhancing heterologous expression in Chlamydomonas reinhardtii by transcript sequence optimization. Plant J. 94, 22–31. doi: 10.1111/tpj.13836, PMID: 29383789
Yang X. Peng J. Pan J. (2019). Nourseothricin N-acetyl transferase (NAT), a new selectable marker for nuclear gene expression in Chlamydomonas. Plant Methods 15:140. doi: 10.1186/s13007-019-0526-5, PMID: 31827577
Zhang M.-P. Wang M. Wang C. (2021). Nuclear transformation of Chlamydomonas reinhardtii: a review. Biochimie 181, 1–11. doi: 10.1016/j.biochi.2020.11.016, PMID: 33227342