[en] Significant advances have been made by identifying the levels of synchrony of the underlying dynamics of a given brain state. This research has demonstrated that non-conscious dynamics tend to be more synchronous than in conscious states, which are more asynchronous. Here we go beyond this dichotomy to demonstrate that different brain states are underpinned by dissociable spatiotemporal dynamics. We investigated human neuroimaging data from different brain states (resting state, meditation, deep sleep and disorders of consciousness after coma). The model-free approach was based on Kuramoto's turbulence framework using coupled oscillators. This was extended by a measure of the information cascade across spatial scales. Complementarily, the model-based approach used exhaustive in silico perturbations of whole-brain models fitted to these measures. This allowed studying of the information encoding capabilities in given brain states. Overall, this framework demonstrates that elements from turbulence theory provide excellent tools for describing and differentiating between brain states.
Disciplines :
Neurosciences & behavior
Author, co-author :
Escrichs, Anira ✱; Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain. anira.escrichs@upf.edu
Perl, Yonatan Sanz ✱; Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain. yonatan.sanz@upf.edu ; Universidad de San Andrés, Buenos Aires, Argentina. yonatan.sanz@upf.edu ; Institut du Cerveau et de la Moelle épinière, ICM, Paris, France. yonatan.sanz@upf.edu
Uribe, Carme ; Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain ; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
Camara, Estela; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain ; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
Türker, Basak; Institut du Cerveau et de la Moelle épinière, ICM, Paris, France ; Inserm U 1127, Paris, France ; CNRS UMR 7225, Paris, France
Pyatigorskaya, Nadya; Institut du Cerveau et de la Moelle épinière, ICM, Paris, France ; Inserm U 1127, Paris, France ; CNRS UMR 7225, Paris, France ; Department of Neuroradiology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
López-González, Ane ; Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
Pallavicini, Carla; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina ; Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
Panda, Rajanikant ; Université de Liège - ULiège > Département des sciences cliniques
Annen, Jitka ; Université de Liège - ULiège > Département des sciences cliniques
Gosseries, Olivia ; Université de Liège - ULiège > Département des sciences cliniques
LAUREYS, Steven ; Centre Hospitalier Universitaire de Liège - CHU > > Centre du Cerveau² ; Joint International Research Unit on Consciousness, CERVO Brain Research Centre, U Laval CANADA, Québec, QC, Canada ; International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
Naccache, Lionel ; Institut du Cerveau et de la Moelle épinière, ICM, Paris, France ; Inserm U 1127, Paris, France ; CNRS UMR 7225, Paris, France
Sitt, Jacobo D; Institut du Cerveau et de la Moelle épinière, ICM, Paris, France ; Inserm U 1127, Paris, France ; CNRS UMR 7225, Paris, France
Laufs, Helmut ; Department of Neurology, Christian Albrechts University, Kiel, Germany ; Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
Tagliazucchi, Enzo; Department of Physics, University of Buenos Aires, Buenos Aires, Argentina ; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
Kringelbach, Morten L ✱; Department of Psychiatry, University of Oxford, Oxford, UK. morten.kringelbach@psych.ox.ac.uk ; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, DK, Jutland, Denmark. morten.kringelbach@psych.ox.ac.uk ; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK. morten.kringelbach@psych.ox.ac.uk
Deco, Gustavo ✱; Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain. gustavo.deco@upf.edu ; Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain. gustavo.deco@upf.edu ; Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany. gustavo.deco@upf.edu ; School of Psychological Sciences, Monash University, Melbourne, Australia. gustavo.deco@upf.edu
Goldman, J. S. et al. Bridging single neuron dynamics to global brain states. Front. Syst. Neurosci. 13, 75 (2019).
Kringelbach, M. L. & Deco, G. Brain states and transitions: insights from computational neuroscience. Cell Rep. 32, 108128 (2020).
Gervasoni, D. et al. Global forebrain dynamics predict rat behavioral states and their transitions. J. Neurosci. 24, 11137–11147 (2004).
Deco, G., Tononi, G., Boly, M. & Kringelbach, M. L. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16, 430–439 (2015).
Carhart-Harris, R. L. et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc. Natl Acad. Sci. 113, 4853–4858 (2016).
McCormick, D. A., Nestvogel, D. B. & He, B. J. Neuromodulation of brain state and behavior. Annu. Rev. Neurosci. 43, 391–415 (2020).
Northoff, G. What the brain’s intrinsic activity can tell us about consciousness? A tri-dimensional view. Neurosci. Biobehav. Rev. 37, 726–738 (2013).
Tagliazucchi, E., Crossley, N., Bullmore, E. T. & Laufs, H. Deep sleep divides the cortex into opposite modes of anatomical–functional coupling. Brain Struct. Funct. 221, 4221–4234 (2016).
Tononi, G., Sporns, O. & Edelman, G. M. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl Acad. Sci. 91, 5033–5037 (1994).
Casali, A. G. et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 5, 198ra105–198ra105 (2013).
Ferrarelli, F. et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc. Natl Acad. Sci. 107, 2681–2686 (2010).
Massimini, M. et al. Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232 (2005).
Steriade, M., Nunez, A. & Amzica, F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993).
Brown, E. N., Lydic, R. & Schiff, N. D. General anesthesia, sleep, and coma. N. Engl. J. Med. 363, 2638–2650 (2010).
Sanchez-Vives, M. V. & McCormick, D. A. Cellular and network mechanisms of rhytmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034 (2000).
Fox, M. The human brain is intrinsically organized into dynamics, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).
Henry, J. C. Electroencephalography: basic principles, clinical applications, and related fields, fifth edition. Neurology 67, 2092–2092-a (2006).
Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. 98, 676–682 (2001).
Boly, M. et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann. N. Y. Acad. Sci. 1129, 119 (2008).
Tononi, G. & Edelman, G. M. Consciousness and complexity. Science 282, 1846–1851 (1998).
Sitt, J. D. et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain 137, 2258–2270 (2014).
El Boustani, S. & Destexhe, A. Brain dynamics at multiple scales: can one reconcile the apparent low-dimensional chaos of macroscopic variables with the seemingly stochastic behavior of single neurons? Int. J. Bifurc. Chaos 20, 1687–1702 (2010).
Steriade, M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101, 243–276 (2000).
Huber, R., Felice Ghilardi, M., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78–81 (2004).
Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge Univ. Press (1995).
Kolmogorov, N. A. Dissipation of energy in the locally isotropic turbulence. C. R. Acad. Sci. URSS 32, 16–18 (1941).
Kolmogorov, N. A. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30, 301–305 (1941).
Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence. (Springer-Verlag, 1984).
Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993).
Oono, Y. & Yeung, C. A cell dynamical system model of chemical turbulence. J. Stat. Phys. 1987 483 48, 593–644 (1987).
Landau, L. D. & Lifshitz, E. M. Fluid mechanics, vol. Course of Theoretical Physics Volume 6 (2nd revised ed.). (Pergamon Press, ISBN 978-0-08-033932-0, OCLC 15017127, 1987).
Tognoli, E. & Kelso, J. A. S. The metastable brain. Neuron 81, 35–48 (2014).
Wildie, M. & Shanahan, M. Metastability and chimera states in modular delay and pulse-coupled oscillator networks. Chaos Interdiscip. J. Nonlinear Sci. 22, 043131 (2012).
Cabral, J. et al. Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. Neuroimage 90, 423–435 (2014).
Shanahan, M. Metastable chimera states in community-structured oscillator networks. Chaos Interdiscip. J. Nonlinear Sci. 20, 013108 (2010).
Kitzbichler, M. G., Smith, M. L., Christensen, S. R. & Bullmore, E. Broadband criticality of human brain network synchronization. PLOS Comput. Biol. 5, e1000314 (2009).
Deco, G., Kemp, M. & Kringelbach, M. L. Leonardo da Vinci and the search for order in neuroscience. Curr. Biol. 31, R704–R709 (2021).
Deco, G. & Kringelbach, M. L. Turbulent-like dynamics in the human brain. Cell Rep. 33, 108471 (2020).
Deco, G. et al. Rare long-range cortical connections enhance human information processing. Curr. Biol. 10.1016/J.CUB.2021.07.064 (2021).
Kawamura, Y., Nakao, H. & Kuramoto, Y. Noise-induced turbulence in nonlocally coupled oscillators. Phys. Rev. E. 75, 036209. https://doi.org/10.1103/PhysRevE.75.036209 (2007).
Hunt, J. C. R. & Vassilicos, J. C. Turbulence Structure and Vortex Dynamics. (Cambridge University Press, 2001).
Breakspear, M., Jirsa, V. & Deco, G. Computational models of the brain: from structure to function. Neuroimage 52, 727–730 (2010).
Honey, C. J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007).
Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R. & Jirsa, V. K. Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn. Neurodyn 2, 115–120 (2008).
Jobst, B. M. et al. Increased stability and breakdown of brain effective connectivity during slow-wave sleep: mechanistic Insights from whole-brain computational modelling. Sci. Rep. 7, 1–16 (2017).
Breakspear, M. Dynamic’ connectivity in neural systems: theoretical and empirical considerations. Neuroinformatics 2, 205–224 (2004).
Perl, Y. S., Escrichs, A., Tagliazucchi, E., Kringelbach, M. L. & Deco, G. On the edge of criticality: strength-dependent perturbation unveils delicate balance between fluctuation and oscillation in brain dynamics. https://doi.org/10.1101/2021.09.23.461520 (2021).
Deco, G. & Jirsa, V. K. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32, 3366–3375 (2012).
Deco, G., Kringelbach, M. L., Jirsa, V. K. & Ritter, P. The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Sci. Rep. 7, 1–14 (2017).
Freyer, F., Roberts, J. A., Ritter, P. & Breakspear, M. A canonical model of multistability and scale-invariance in biological systems. PLOS Comput. Biol. 8, e1002634 (2012).
Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R. & Jirsa, V. K. Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput. Biol. 4, e1000196 (2008).
Deco, G. et al. How local excitation–inhibition ratio impacts the whole brain dynamics. J. Neurosci. 34, 7886–7898 (2014).
López-González, A. et al. Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics. Commun. Biol. 4, 1–15 (2021).
Nakao, H. Complex Ginzburg-Landau equation on networks and its non-uniform dynamics. Eur. Phys. J. Spec. Top. 223, 2411–2421 (2014).
Daido, H. Susceptibility of large populations of coupled oscillators. Phys. Rev. E 91, 012925 (2015).
Lempel, A. & Ziv, J. On the complexity of finite sequences. IEEE Trans. Inf. Theory 22, 75–81 (1976).
King, J. R. et al. Information sharing in the brain indexes consciousness in noncommunicative patients. Curr. Biol. 23, 1914–1919 (2013).
Casarotto, S. et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann. Neurol. 80, 718–729 (2016).
Bodart, O. et al. Measures of metabolism and complexity in the brain of patients with disorders of consciousness. NeuroImage Clin. 14, 354–362 (2017).
Dehaene, S. & Changeux, J. P. Experimental and theoretical approaches to conscious processing. Neuron 70, 200–227 (2011).
Tagliazucchi, E. & van Someren, E. J. W. The large-scale functional connectivity correlates of consciousness and arousal during the healthy and pathological human sleep cycle. Neuroimage 160, 55–72 (2017).
Tagliazucchi, E. et al. Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep. Proc. Natl Acad. Sci. 110, 15419–15424 (2013).
Qin, P. et al. How are different neural networks related to consciousness? Ann. Neurol. 78, 594–605 (2015).
Bodien, Y. G., Chatelle, C. & Edlow, B. L. Functional networks in disorders of consciousness. Semin. Neurol. 37, 485–502 (2017).
Demertzi, A. et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain 138, 2619–2631 (2015).
Fernández-Espejo, D. et al. A role for the default mode network in the bases of disorders of consciousness. Ann. Neurol. 72, 335–343 (2012).
Horovitz, S. G. et al. Decoupling of the brain’s default mode network during deep sleep. Proc. Natl Acad. Sci. 106, 11376–11381 (2009).
Ipiña, I. P. et al. Modeling regional changes in dynamic stability during sleep and wakefulness. Neuroimage 215, 116833 (2020).
Stevner, A. B. A. et al. Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep. Nat. Commun. 10, 1–14 (2019).
De Filippi, E. et al. Meditation-induced effects on whole-brain structural and effective connectivity. Brain Struct. Funct. 1, 1–16 (2022).
Tang, Y.-Y., Hölzel, B. K. & Posner, M. I. The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 16, 213–225 (2015).
Taylor, V. A. et al. Impact of meditation training on the default mode network during a restful state. Soc. Cogn. Affect. Neurosci. 8, 4–14 (2013).
Hasenkamp, W. & Barsalou, L. W. Effects of meditation experience on functional connectivity of distributed brain networks. Front. Hum. Neurosci. 0, 38 (2012).
Hasenkamp, W., Wilson-Mendenhall, C. D., Duncan, E. & Barsalou, L. W. Mind wandering and attention during focused meditation: A fine-grained temporal analysis of fluctuating cognitive states. Neuroimage 59, 750–760 (2012).
Deco, G., Tagliazucchi, E., Laufs, H., Sanjuán, A. & Kringelbach, M. L. Novel intrinsic ignition method measuring local-global integration characterizes wakefulness and deep sleep. eNeuro 4, 1–12 (2017).
Cruzat, J. et al. Effects of classic psychedelic drugs on turbulent signatures in brain dynamics. Netw. Neurosci. 1–21 10.1162/NETN_A_00250 (2022).
Perl, Y. S. et al. Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness. PLOS Comput. Biol. 17, e1009139 (2021).
Deco, G. et al. Awakening: Predicting external stimulation to force transitions between different brain states. Proc. Natl Acad. Sci. USA 116, 18088–18097 (2019).
Escrichs, A. et al. The effect of external stimulation on functional networks in the aging healthy human brain. Cereb. Cortex 10.1093/CERCOR/BHAC064 (2022).
Deco, G. et al. Perturbation of whole-brain dynamics in silico reveals mechanistic differences. Neuroimage 169, 46–56 (2018).
Clausen, J. Ethical brain stimulation – neuroethics of deep brain stimulation in research and clinical practice. Eur. J. Neurosci. 32, 1152–1162 (2010).
Kringelbach, M. L., Jenkinson, N., Owen, S. L. F. & Aziz, T. Z. Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 8, 623–635 (2007).
Escrichs, A. et al. Characterizing the dynamical complexity underlying meditation. Front. Syst. Neurosci. 13, 27 (2019).
Tagliazucchi, E. & Laufs, H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82, 695–708 (2014).
Berry, R. B. et al. AASM | Scoring Manual Version 2.2. The AASM manual for the scoring of sleep and associated events. Rules, terminology and technical specifications. Am. Acad. Sleep Med. 176, 16–31 (2015).
Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).
Beckmann, C. F. & Smith, S. M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23, 137–152 (2004).
Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).
Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).
Griffanti, L. et al. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95, 232–247 (2014).
Setsompop, K. et al. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neuroimage 80, 220–233 (2013).
Horn, A., Neumann, W. J., Degen, K., Schneider, G. H. & Kühn, A. A. Toward an electrophysiological “Sweet spot” for deep brain stimulation in the subthalamic nucleus. Hum. Brain Mapp. 38, 3377–3390 (2017).
Horn, A. & Blankenburg, F. Toward a standardized structural–functional group connectome in MNI space. Neuroimage 124, 310–322 (2016).
Glerean, E., Salmi, J., Lahnakoski, J. M., Jääskeläinen, I. P. & Sams, M. Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connect. 2, 91–101 (2012).
Schartner, M. M. et al. Global and local complexity of intracranial EEG decreases during NREM sleep. Neurosci. Conscious. 2017, 1–12 (2017).
Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 9, 811–818 (1990).