[en] The largest (M8+) known earthquakes in the Himalaya have ruptured the upper locked section of the Main Himalayan Thrust zone, offsetting the ground surface along the Main Frontal Thrust at the range front. However, out-of-sequence active structures have received less attention. One of the most impressive examples of such faults is the active fault that generally follows the surface trace of the Main Boundary Thrust (MBT). This fault has generated a clear geomorphological signature of recent deformation in eastern and western Nepal, as well as further west in India. We focus on western Nepal, between the municipalities of Surkhet and Gorahi where this fault is well expressed. Although the fault system as a whole is accommodating contraction, across most of its length, this particular fault appears geomorphologically as a normal fault, indicating crustal extension in the hanging wall of the MHT. We focus this study on the reactivation of the MBT along the Surkhet-Gorahi segment of the surface trace of the newly named Reactivated Boundary Fault, which is ~ 120 km long. We first generate a high-resolution Digital Elevation Model from triplets of high-resolution Pleiades images and use this to map the fault scarp and its geomorphological lateral variation. For most of its length, normal motion slip is observed with a dip varying between 20° and 60° and a maximum cumulative vertical offset of 27 m. We then present evidence for recent normal faulting in a trench located in the village of Sukhetal. Radiocarbon dating of detrital charcoals sampled in the hanging wall of the fault, including the main colluvial wedge and overlying sedimentary layers, suggest that the last event occurred in the early sixteenth century. This period saw the devastating 1505 earthquake, which produced ~ 23 m of slip on the Main Frontal Thrust. Linked or not, the ruptures on the MFT and MBT happened within a short time period compared to the centuries of quiescence of the faults that followed. We suggest that episodic normal-sense activity of the MBT could be related to large earthquakes rupturing the MFT, given its proximity, the sense of motion, and the large distance that separates the MBT from the downdip end of the locked fault zone of the MHT fault system. We discuss these results and their implications for the frontal Himalayan thrust system.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Riesner, Magali; Earth Observatory of Singapore, NTU, Singapore, Singapore. magali.riesner@gmail.com ; CEA, DAM, DIF, 91297, Arpajon, France. magali.riesner@gmail.com
Bollinger, Laurent; CEA, DAM, DIF, 91297, Arpajon, France
Hubbard, Judith; Earth Observatory of Singapore, NTU, Singapore, Singapore
Guérin, Cyrielle; CEA, DAM, DIF, 91297, Arpajon, France
Lefevre, Marthe ; Université de Liège - ULiège > Sphères ; Institut de Physique du Globe de Paris, Paris, France
Vallage, Amaury; CEA, DAM, DIF, 91297, Arpajon, France
Basnet Shah, Chanda; Department of Mines and Geology, Kathmandu, Nepal
Kandel, Thakur Prasad; Department of Mines and Geology, Kathmandu, Nepal
Haines, Samuel; Earth Observatory of Singapore, NTU, Singapore, Singapore
Sapkota, Soma Nath; Department of Mines and Geology, Kathmandu, Nepal
Language :
English
Title :
Localized extension in megathrust hanging wall following great earthquakes in western Nepal.
Commissariat à l'Énergie Atomique et aux Énergies Alternatives Nanyang Technological University French embassy in Singapore
Funding text :
This work was funded by the Nanyang Technological University (NTU, Singapore) and the Commissariat à l’énergie atomique et aux énergies alternatives (CEA, France) as well as the French embassy in Singapore through the PHC-Merlion program (2018–2019). All radiocarbon dating analysis were performed by Beta analytics (Miami, USA).
Henstock, T. J., McNeill, L. C. & Tappin, D. R. Seafloor morphology of the Sumatran subduction zone: Surface rupture during megathrust earthquakes? Geology 34(6), 485–488 (2006). DOI: 10.1130/22426.1
Fujiwara, T. et al. The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis. Science 334(6060), 1240–1240 (2011). DOI: 10.1126/science.1211554
Coudurier-Curveur, A. et al. A composite rupture model for the great 1950 Assam earthquake across the cusp of the East Himalayan Syntaxis. Earth Planet. Sci. Lett. 531, 115928 (2019). DOI: 10.1016/j.epsl.2019.115928
Malik, J. N., Sahoo, S., Satuluri, S. & Okumura, K. Active fault and paleoseismic studies in Kangra valley: Evidence of surface rupture of a great Himalayan 1905 Kangra earthquake (M w 7.8), northwest Himalaya. India. Bull. Seismol. Soc. Am. 105(5), 2325–2342 (2015). DOI: 10.1785/0120140304
Tsuji, T. et al. Extension of continental crust by anelastic deformation during the 2011 Tohoku-oki earthquake: The role of extensional faulting in the generation of a great tsunami. Earth Planet. Sci. Lett. 364, 44–58 (2013). DOI: 10.1016/j.epsl.2012.12.038
Hardebeck, J. L. Coseismic and postseismic stress rotations due to great subduction zone earthquakes. Geophys. Res. Lett. 10.1029/2012GL053438 (2012). DOI: 10.1029/2012GL053438
Hardebeck, J. L. & Okada, T. Temporal stress changes caused by earthquakes: A review. J. Geophys. Res. Solid Earth 123(2), 1350–1365 (2018). DOI: 10.1002/2017JB014617
Asano, Y. et al. Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63(7), 669–673 (2011). DOI: 10.5047/eps.2011.06.016
Bécel, A. et al. Tsunamigenic structures in a creeping section of the Alaska subduction zone. Nat. Geosci. 10(8), 609 (2017). DOI: 10.1038/ngeo2990
Nakata, T. Tectonic landforms of several active faults in the western Nepal Himalayas. J. Nepal Geol. Soc. 4, 177–200 (1984).
Nakata, T. Active faults of the Himalaya of India and Nepal. Geol. Soc. Am. Spec. Pap. 232, 243–264 (1989).
Mugnier, J. L., Huyghe, P., Chalaron, E. & Mascle, G. Recent movements along the Main Boundary Thrust of the Himalayas: Normal faulting in an over-critical thrust wedge? Tectonophysics 238(1–4), 199–215 (1994). DOI: 10.1016/0040-1951(94)90056-6
Mukul, M., Jaiswal, M. & Singhivi, A. K. Timing of recent out-of-sequence active deformation in the frontal Himalayan wedge: Insights from the Darjiling sub-Himalaya, India. Geol. Soc. Am. 35(11), 999–1002 (2007).
Hossler, T. et al. Surface ruptures of large Himalayan earthquakes in Western Nepal: Evidence along a reactivated strand of the Main Boundary Thrust. Earth Planet. Sci. Lett. 434, 187–196 (2016). DOI: 10.1016/j.epsl.2015.11.042
Bhakuni, S. S. & Luirei, K. Normal faults near the top of footwall of Ramgarh Thrust along Kosi River valley, Kumaun Lesser Himalaya. Curr. Sci. 110, 640–648 (2016). DOI: 10.18520/cs/v110/i4/640-648
Philip, G., Suresh, N. P. & Jayangondaperumal, R. Late Pleistocene-Holocene strain release by normal faulting along the Main Boundary Thrust at Logar in the northwestern Kumaon Sub Himalaya, India. Quat. Int. 462, 50–64 (2017). DOI: 10.1016/j.quaint.2017.05.022
Murphy, M. A. et al. Limit of strain partitioning in the Himalaya marked by large earthquakes in western Nepal. Nat. Geosci. 7(1), 38–42 (2014). DOI: 10.1038/ngeo2017
Bilham, R., Bali, B. S., Ahmad, S. & Schiffman, C. Oldham’s lost fault. Seismol. Res. Lett. 84(4), 702–710 (2013). DOI: 10.1785/0220130036
Dhital, M. R. Geology of the Nepal Himalaya: Regional Perspective of the Classic Collided Orogen (Springer, 2015). DOI: 10.1007/978-3-319-02496-7
Bilham, R., Larson, K. & Freymueller, J. GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386(6620), 61–64 (1997). DOI: 10.1038/386061a0
Bettinelli, P. et al. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. J. Geodesy 80(8–11), 567–589 (2006). DOI: 10.1007/s00190-006-0030-3
Lindsey, E. O. et al. Structural control on downdip locking extent of the Himalayan megathrust. J. Geophys. Res. Solid Earth 123(6), 5265–5278 (2018). DOI: 10.1029/2018JB015868
Jouanne, F., Mugnier, J. L., Sapkota, S. N., Bascou, P. & Pecher, A. Estimation of coupling along the Main Himalayan Thrust in the central Himalaya. J. Asian Earth Sci. 133, 62–71 (2017). DOI: 10.1016/j.jseaes.2016.05.028
Stevens, V. L. & Avouac, J. P. Interseismic coupling on the main Himalayan thrust. Geophys. Res. Lett. 42(14), 5828–5837 (2015). DOI: 10.1002/2015GL064845
Dal Zilio, L., Jolivet, R. & Van Dinther, Y. Segmentation of the Main Himalayan Thrust illuminated by Bayesian inference of interseismic coupling. Geophys. Res. Lett. 10.1029/2019GL086424 (2020). DOI: 10.1029/2019GL086424
Bollinger, L. et al. Estimating the return times of great Himalayan earthquakes in eastern Nepal: Evidence from the Patu and Bardibas strands of the Main Frontal Thrust. J. Geophys. Res. Solid Earth 119(9), 7123–7163 (2014). DOI: 10.1002/2014JB010970
Lavé, J. et al. Evidence for a great Medieval earthquake (~ 1100 AD) in the central Himalayas, Nepal. Science 307(5713), 1302–1305 (2005). DOI: 10.1126/science.1104804
Malik, J. N. et al. Paleoseismic evidence from trench investigation along Hajipur fault, Himalayan Frontal Thrust, NW Himalaya: Implications of the faulting pattern on landscape evolution and seismic hazard. J. Struct. Geol. 32(3), 350–361 (2010). DOI: 10.1016/j.jsg.2010.01.005
Malik, J. N., Naik, S. P., Sahoo, S., Okumura, K. & Mohanty, A. Paleoseismic evidence of the CE 1505 (?) and CE 1803 earthquakes from the foothill zone of the Kumaon Himalaya along the Himalayan Frontal Thrust (HFT), India. Tectonophysics 714, 133–145 (2017). DOI: 10.1016/j.tecto.2016.07.026
Mugnier, J. L., Huyghe, P., Gajurel, A. P., Upreti, B. N. & Jouanne, F. Seismites in the Kathmandu basin and seismic hazard in central Himalaya. Tectonophysics 509(1–2), 33–49 (2011). DOI: 10.1016/j.tecto.2011.05.012
Yule, D., J. et al. Large surface rupture of the Main Frontal Thrust in east-central and western Nepal—Evidence for an unprecedented type of Himalayan earthquake. In Proc. International Workshop on Seismology, Seismotectonics and Seismic Hazard in the Himalayan Region, Kathmandu, 28–29 November, 2006, Vol. 534, 13–14 (2006).
Sapkota, S. N. et al. Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat. Geosci. 6(1), 71–76 (2013). DOI: 10.1038/ngeo1669
Upreti, B. N. The latest active faulting in Southeast Nepal. In Proc. Active Fault Research for the New Millenium, Hokudan Int. in Symp. Sch. Active Faulting, Awaji Island, Hyogo, Japan (2000).
Rizza, M. et al. Post-earthquake aggradation processes to hide surface ruptures in thrust systems: The M8.3, 1934, Bihar-Nepal earthquake ruptures at Charnath Khola (Eastern Nepal). J. Geophys. Res. Solid Earth 124(8), 9182–9207 (2019). DOI: 10.1029/2018JB016376
Meigs, A. J., Burbank, D. W. & Beck, R. A. Middle-late Miocene (> 10 Ma) formation of the Main Boundary thrust in the western Himalaya. Geology 23(5), 423–426 (1995). DOI: 10.1130/0091-7613(1995)023<0423:MLMMFO>2.3.CO;2
Bilham, R. & Ambraseys, N. Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000. Curr. Sci. 88, 1658–1663 (2005).
Stevens, V. L. & Avouac, J. P. Millenary Mw> 9.0 earthquakes required by geodetic strain in the Himalaya. Geophys. Res. Lett. 43(3), 1118–1123 (2016). DOI: 10.1002/2015GL067336
Jackson, D. The great western-Himalayan earthquake of 1505: A rupture of the Central Himalayan Gap? In Tibet, Past and Present (ed. Blezer, H.) 147–159 (Brill’s Tibetan Studies Library I, 2002).
Ambraseys, N. & Jackson, D. A note on early earthquakes in northern India and southern Tibet. Curr. Sci. 84, 570–582 (2003).
Ghazoui, Z. et al. Potentially large post-1505 AD earthquakes in western Nepal revealed by a lake sediment record. Nat. Commun. 10(1), 2258 (2019). DOI: 10.1038/s41467-019-10093-4
Mugnier, J. L., Huyghe, P., Gajurel, A. P. & Becel, D. Frontal and piggy-back seismic ruptures in the external thrust belt of Western Nepal. J. Asian Earth Sci. 25(5), 707–717 (2005). DOI: 10.1016/j.jseaes.2004.05.009
Guérin, C., Binet, R. & Pierrot-Deseilligny, M. Automatic detection of elevation changes by differential DSM analysis: Application to urban areas. IEEE J. Select. Top. Appl. Earth Observ. Remote Sensing 7(10), 4020–4037 (2014). DOI: 10.1109/JSTARS.2014.2300509
Guérin, C. Effect of the DTM quality on the bundle block adjustment and orthorectification process without GCP: Example on a steep area. In Proc. 2017 IEEE International Geoscience Remote Sensing Symposium (IGARSS). IEEE, 1067–1070 (2017).
Pierrot-Deseilligny, M. & Paparoditis, N. A multiresolution and optimization-based image matching approach: An application to surface reconstruction from SPOT5-HRS stereo imagery. Arch. Photogr. Remote Sensing Spatial Inf. Sci. 36, 1–5 (2006).
Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4), 1869–1887 (2013). DOI: 10.2458/azu_js_rc.55.16947
Hua, Q. & Barbetti, M. Review of tropospheric bomb 14 C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3), 1273–1298 (2004). DOI: 10.1017/S0033822200033142
Bronk Ramsey, C. Radiocarbon dating: Revolutions in understanding. Archaeometry 50(2), 249–275 (2008). DOI: 10.1111/j.1475-4754.2008.00394.x
Ramsey, C. B. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3), 1023–1045 (2009). DOI: 10.1017/S0033822200034093
Dee, M. W. & Ramsey, C. B. High-precision Bayesian modeling of samples susceptible to inbuilt age. Radiocarbon 56(1), 83–94 (2014). DOI: 10.2458/56.16685
Hamilton, W. D. & Kenney, J. Multiple Bayesian modelling approaches to a suite of radiocarbon dates from ovens excavated at Ysgol yr Hendre, Caernarfon, North Wales. Quat. Geochronol. 25, 72–82 (2015). DOI: 10.1016/j.quageo.2014.10.001
Krus, A. M., Cook, R. & Hamilton, D. Bayesian chronological modeling of SunWatch, a Fort Ancient village in Dayton, Ohio. Radiocarbon 57(5), 965–977 (2015). DOI: 10.2458/azu_rc.57.18179
Bollinger, L., Tapponnier, P., Sapkota, S. N. & Klinger, Y. Slip deficit in central Nepal: Omen for a repeat of the 1344 AD earthquake? Earth Planets Space 68(1), 12 (2016). DOI: 10.1186/s40623-016-0389-1
Campbell, A. Account of the earthquake at Kathmandu. J. Asiatic Soc. Bengal 2, 564–567 (1833).
Campbell, A. Further particulars of the earthquake in Nepal. J. Asiatic Soc. Bengal 2, 636–639 (1833).
Martin, S. & Szeliga, W. A Catalog of felt intensity data for 570 earthquakes in India from 1636 to 2009. Bull. Seism. Soc. Am. 100(2), 562–569 (2010). DOI: 10.1785/0120080328
Szeliga, W., Hough, S., Martin, S. & Bilham, R. Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bull. Seismol. Soc. Am. 100(2), 570–584 (2010). DOI: 10.1785/0120080329
Bellahsen, N., Daniel, J. M., Bollinger, L. & Burov, E. Influence of viscous layers on the growth of normal faults: Insights from experimental and numerical models. J. Struct. Geol. 25(9), 1471–1485 (2003). DOI: 10.1016/S0191-8141(02)00185-2
Wells, D. L. & Coppersmith, K. J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 84(4), 974–1002 (1994).
Hanks, T. C. & Kanamori, H. A moment magnitude scale. J. Geophys. Res. Solid Earth 84(B5), 2348–2350 (1979). DOI: 10.1029/JB084iB05p02348
Almeida, R. V., Hubbard, J., Liberty, L., Foster, A. & Sapkota, S. N. Seismic imaging of the Main Frontal Thrust in Nepal reveals a shallow décollement and blind thrusting. Earth Planet. Sci. Lett. 494, 216–225 (2018). DOI: 10.1016/j.epsl.2018.04.045
Conin, M., Henry, P., Godard, V. & Bourlange, S. Splay fault slip in a subduction margin, a new model of evolution. Earth Planet. Sci. Lett. 341, 170–175 (2012). DOI: 10.1016/j.epsl.2012.06.003
Lacassin, R., Armijo, R. & Tapponnier, P. Can ramp to flat bends on thrusts induce transport-parallel extension? The example of the Himalayan thrust wedge. Int. Meet. Late Orogenic Ext. Mount. Belts 219, 114–115 (1993).
Ide, S., Baltay, A. & Beroza, G. C. Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 332(6036), 1426–1429 (2011). DOI: 10.1126/science.1207020
Ranero, C. R. & von Huene, R. Subduction erosion along the Middle America convergent margin. Nature 404(6779), 748–752 (2000). DOI: 10.1038/35008046
Okamura, Y. et al. Fore arc structure and plate boundary earthquake sources along the southwestern Kuril subduction zone. J. Geophys. Res. Solid Earth. 10.1029/2007JB005246 (2008). DOI: 10.1029/2007JB005246
McKenzie, D. & Jackson, J. Tsunami earthquake generation by the release of gravitational potential energy. Earth Planet. Sci. Lett. 345, 1–8 (2012). DOI: 10.1016/j.epsl.2012.06.036