[en] Surfactin, one of the best lipopeptide surfactants, was first isolated from Bacillus sp. in 1969. Since then, Bacillus sp. has been a remarkable source of bioactive lipopeptides, with a huge natural biodiversity. Lipopeptides from Bacillus sp. are now divided into three main families: surfactin, fengycin, and iturin. The peptide moiety of these lipopeptides is synthesised by huge multi-enzymatic proteins called nonribosomal peptide synthetases, which are responsible for the peptide biodiversity of these lipopeptides. Moreover, the fatty acid chain also encompasses a high diversity with different β-hydroxy or β-amino fatty acid chains of different lengths, isomery, or saturation, which can be incorporated. After describing the mode of synthesis of the different families of lipopeptides produced by Bacillus sp. and their biodiversity, this chapter describes how this lipopeptide biodiversity can be increased using genetic engineering and how the lipopeptides can be overproduced and purified. The high biodiversity of lipopeptides induces a broad range of physicochemical properties, which can be linked to multiple biological activities with many applications in different sectors. The increasing understanding of the mode of biosynthesis of these lipopeptides should lead to the development of novel compounds with increased properties and applications.
Disciplines :
Biotechnology
Author, co-author :
Théatre, Ariane ✱; Université de Liège - ULiège > Département GxABT > Microbial technologies
Hoste, Alexis ✱; Université de Liège - ULiège > Département GxABT > Microbial technologies
Rigolet, Augustin ; Université de Liège - ULiège > TERRA Research Centre
Benneceur, Ikram ; Université de Liège - ULiège > Département GxABT > Microbial technologies ; University of Sciences and Technology Houari Boumediene, FSB, LBCM, Bab Ezzouar, Algiers, Algeria
Bechet, M; ICV - Institut Charles Viollette, Joint Research Unit BioEcoAgro, UMRt 1158, Univ. Lille, INRAE, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
Ongena, Marc ; Université de Liège - ULiège > Département GxABT > Microbial technologies
Deleu, Magali ; Université de Liège - ULiège > Département GxABT > Chimie des agro-biosystèmes
Jacques, Philippe ; Université de Liège - ULiège > Département GxABT > Microbial technologies
✱ These authors have contributed equally to this work.
Language :
English
Title :
Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides.
Publication date :
2022
Main work title :
Biosurfactants for the Biobased Economy
Author, co-author :
Hausmann, Rudolf; University of Hohenheim > Institute of Food Science and Biotechnology
Henkel, Marius; University of Hohenheim > Institute of Food Science and Biotechnology
Kaspar F, Neubauer P, Gimpel M (2019) Bioactive secondary metabolites from Bacillus subtilis: a comprehensive review. J Nat Prod 82:2038–2053. https://doi.org/10.1021/acs. jnatprod.9b00110
Hathout Y, Ho YP, Ryzhov V, Demirev P, Fenselau C (2000) Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod 63:1492–1496. https://doi.org/10. 1021/np000169q
Batrakov SG, Rodionova TA, Esipov SE, Polyakov NB, Sheichenko VI, Shekhovtsova NV, Lukin SM, Panikov NS, Nikolaev YA (2003) A novel lipopeptide, an inhibitor of bacterial adhesion, from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603. Biochim Biophys Acta Mol Cell Biol Lipids 1634:107–115. https://doi.org/10.1016/j.bbalip. 2003.09.004
Lee SC, Kim SH, Park IH, Chung SY, Choi YL (2007) Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity. Arch Microbiol 188:307–312. https://doi.org/10.1007/s00203-007-0250-9
Cochrane JR, Exner CJ, Jolliffe KA (2015) Total synthesis and reassignment of the structures of the antimicrobial lipodepsipeptides circulocin γ and δ. J Org Chem 80:4491–4500. https://doi.org/10.1021/acs.joc.5b00349
He H, Shen B, Korshalla J, Carter GT (2001) Circulocins, new antibacterial lipopeptides from Bacillus circulans, J2154. Tetrahedron 57:1189–1195. https://doi.org/10.1016/S0040-4020 (00)01135-2
Biria D, Maghsoudi E, Roostaazad R, Dadafarin H, Lotfi SS, Amoozegar MA (2010) Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World J Microbiol Biotechnol 26:871–878. https://doi.org/10.1007/s11274-009-0246-5
Luo C, Liu X, Zhou X, Guo J, Truong J, Wang X, Zhou H, Li X, Chen Z (2015) Unusual biosynthesis and structure of locillomycins from Bacillus subtilis 916. Appl Environ Microbiol 81:6601–6609. https://doi.org/10.1128/AEM.01639-15
Gao L, Han J, Liu H, Qu X, Lu Z, Bie X (2017) Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 110:1007–1018. https://doi.org/10.1007/s10482-017-0874-y
Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis – principles and prospects reviews. Angew Chem Int 56:3770–3823. https://doi.org/10.1002/anie.201609079
Lipmann F, Gevers W, Kleinkauf H, Roskoski R (1971) Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine. Adv Enzymol Relat Areas Mol Biol 35:1–34. https://doi.org/10.1002/9780470122808
Flissi A, Ricart E, Chevalier M, Dufresne Y, Michalik J, Jacques P, Flahaut C, Pupin M (2020) Norine: update of the nonribosomal peptide resource. Nucleic Acids Res 48:465–469. https://doi.org/10.1093/nar/gkz1000
Mootz HD, Finking R, Marahiel MA (2001) 40-phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. J Biol Chem 276:37289–37298. https://doi.org/10. 1074/jbc.M103556200
Quadri LEN, Weinreb PH, Lei M, Nakano MM, Zuber P, Walsh CT (1998) Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carder protein domains in peptide synthetases. Biochemistry 37:1585–1595. https://doi.org/10.1021/bi9719861
Bloudoff K, Schmeing TM (2017) Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochim Biophys Acta Proteins Proteomics. https://doi.org/10.1016/j.bbapap.2017.05.010
Aron ZD, Dorrestein PC, Blackhall JR, Kelleher NL, Walsh CT (2005) Characterization of a new tailoring domain in polyketide biogenesis: the amine transferase domain of MycA in the mycosubtilin gene cluster. J Am Chem Soc 127:14986–14987. https://doi.org/10.1021/ja055247g
Hansen DB, Bumpus SB, Aron ZD, Kelleher NL, Walsh CT (2007) The leading module of mycosubtilin: an adenylation domain with fatty acid selectivity. J Am Chem Soc 129:6366– 6367. https://doi.org/10.1021/ja070890j
Horowitz S, Gilbert JN, Griffin WM (1990) Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J Ind Microbiol 6:243–248
Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics production, isolation, chemical properties, structure and biological activity. J Antibiot (Tokyo) 43:267–280
Bonmatin J-M, Laprevote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556. https://doi.org/10.2174/138620703106298716
Peypoux F, Bonmatin J-M, Labbé H, Das BC, Ptak M, Michel G (1991) Isolation and characterization of a new variant of surfactin, the [Val7]surfactin. Eur J Biochem 202:101– 106. https://doi.org/10.1111/j.1432-1033.1991.tb16349.x
Liu XY, Yang SZ, Mu BZ (2009) Production and characterization of a C15-surfactin-O-methyl ester by a lipopeptide producing strain Bacillus subtilis HSO121. Process Biochem 44: 1144–1151. https://doi.org/10.1016/j.procbio.2009.06.014
Li Y, Yang S, Mu B (2010) The surfactin and lichenysin isoforms produced by Bacillus licheniformis HSN 221. Anal Lett 43:929–940. https://doi.org/10.1080/00032710903491047
Zhuravleva OI, Afiyatullov SS, Ermakova SP, Nedashkovskaya OI, Dmitrenok PS, Denisenko VA, Kuznetsova TA (2010) New C14-surfactin methyl ester from the marine bacterium Bacillus pumilus KMM 456. Russ Chem Bull 59:2137–2142. https://doi.org/10.1007/s11172-010-0369-8
Honma M, Tanaka K, Konno K, Tsuge K, Okuno T, Hashimoto M (2012) Termination of the structural confusion between plipastatin A1 and fengycin IX. Bioorg Med Chem 20:3793– 3798. https://doi.org/10.1016/j.bmc.2012.04.040
Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:1–12. https://doi.org/10.1186/1475-2859-8-63
Ben Ayed H, Hmidet N, Béchet M, Chollet M, Chataigné G, Leclère V, Jacques P, Nasri M (2014) Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem 49:1699–1707. https://doi.org/10.1016/j.procbio.2014.07.001
Troyano Pueyo M, Bloch Jr C, Maria Carmona-Ribeiro A, di Mascio P (2009) Lipopeptides produced by a soil Bacillus megaterium strain. Microb Ecol 57. https://doi.org/10.1007/s00248-008-9464-x
Nishikiori T, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H (1986) Plipastatins: new inhibitors of phospholipase A2 produced by Bacillus cereus BMG302-fF67 III. Structural elucidation of plipastatins. J Antibiot (Tokyo) 39:755–761. https://doi.org/10.7164/antibiotics. 39.755
Vanittanakom N, Loeffler W (1986) Fengycin – a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot (Tokyo) XXXIX:888–901. https://doi.org/10.7164/antibiotics.39.888
Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques P, Thonart P, Vater J (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41. https://doi.org/10.1016/S1074-5521(99)80078-7
Lin TP, Chen CL, Chang LK, Tschen JSM, Liu ST (1999) Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis. J Bacteriol 181:5060– 5067. https://doi.org/10.1128/jb.181.16.5060-5067.1999
Lin TP, Chen CL, Fu HC, Wu CY, Lin GH, Huang SH, Chang LK, Liu ST (2005) Functional analysis of fengycin synthetase FenD. Biochim Biophys Acta Gene Struct Expr 1730:159– 164. https://doi.org/10.1016/j.bbaexp.2005.02.005
Shu HY, Lin GH, Wu YC, Tschen JSM, Liu ST (2002) Amino acids activated by fengycin synthetase FenE. Biochem Biophys Res Commun 292:789–793. https://doi.org/10.1006/bbrc. 2002.6729
Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch C J Biosci 54:859–866. https://doi. org/10.1515/znc-1999-1102
Lin GH, Chen CL, Tschen JSM, Tsay SS, Chang YS, Liu ST (1998) Molecular cloning and characterization of fengycin synthetase gene fenB from Bacillus subtilis. J Bacteriol 180: 1338–1341. https://doi.org/10.1128/jb.180.5.1338-1341.1998
Chen L, Wang N, Wang X, Hu J, Wang S (2010) Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresour Technol 101: 8822–8827. https://doi.org/10.1016/j.biortech.2010.06.054
Esumi Y, Suzuki Y, Itoh Y, Chijimatsu M, Uramoto M, Kimura KI, Nakayama S, Yoshihama M, Ichikawa T, Haramo T, Fujishige J (2003) SNA-60-367 components, new peptide enzyme inhibitors of aromatase: structure of the fatty acid side chain and amino acid sequence by mass spectrometry. J Antibiot (Tokyo) 56:716–720. https://doi.org/10.7164/antibiotics.56.716
Pathak KV, Keharia H, Gupta K, Thakur SS, Balaram P (2012) Lipopeptides from the banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. J Am Soc Mass Spectrom 23:1716–1728. https://doi.org/10.1007/s13361-012-0437-4
Villegas-Escobar V, Ceballos I, Mira JJ, Argel LE, Orduz Peralta S, Romero-Tabarez M (2013) Fengycin C produced by Bacillus subtilis EA-CB0015. J Nat Prod 76:503–509. https://doi.org/10.1021/np300574v
Li X-Y, Mao Z-C, Wang Y-H, Wu Y-X, He Y-Q, Long C-L (2012) LC-MS and MS/MS characterization of antifungal cyclic lipopeptides produced by Bacillus subtilis XF-1. J Mol Microbiol Biotechnol 22:83–93. https://doi.org/10.1159/000338530
Ait Kaki A, Smargiasso N, Ongena M, Kara Ali M, Moula N, De Pauw E, Kacem Chaouche N (2020) Characterization of new fengycin cyclic lipopeptide variants produced by Bacillus amyloliquefaciens (ET) originating from a Salt Lake of Eastern Algeria. Curr Microbiol 77: 443–451. https://doi.org/10.1007/s00284-019-01855-w
Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi YT (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97:942–949. https://doi.org/10.1111/j.1365-2672.2004.02356.x
Delcambe L, Devignat R (1950) L’iturine, nouvel antibiotique produit par un Bacillus subtilis. C R Seances Soc Biol Fil 144:1431–1434
Peypoux F, Guinand M, Michel G, Delcambe L, Das BC, Lederer E (1978) Structure of iturine A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry 17:3992–3996. https://doi.org/10.1021/bi00612a018
Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y (2002) Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693–698. https://doi.org/10.1016/S0031-9422(02)00365-5
Winkelmann G, Allgaier H, Lupp R, Jung G (1983) Iturin al – a new long chain iturin a possessing an unusual high content of c16-β-amino acids. J Antibiot (Tokyo) 36:1451–1457. https://doi.org/10.7164/antibiotics.36.1451
Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963. https://doi. org/10.1016/S0038-0717(02)00027-5
Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Biosurfactants, pp 57–91. https://doi.org/10.1007/978-3-642-14490-5
Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci U S A 96:13294– 13299. https://doi.org/10.1073/pnas.96.23.13294
Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004
Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183:6265–6273. https://doi.org/10.1128/JB.183.21.6265-6273.2001
Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174. https://doi.org/10.1016/0300-483X(94)90159-7
Peypoux F, Besson F, Michel G, Delcambe L, Das BC (1978) Structure de l’iturine C de Bacillus subtilis. Tetrahedron 34:1147–1152. https://doi.org/10.1016/0040-4020(78)80138-0
Peypoux F, Besson F, Michel G, Delcambe L (1981) Structure of Bacillomycin D, a new antibiotic of the iturin group. Eur J Biochem 118:323–327. https://doi.org/10.1111/j. 1432-1033.1981.tb06405.x
Besson F, Peypoux F, Michel G, Delcambe L (1977) Structure de la bacillomycine L, antibiotique de Bacillus subtils. Eur J Biochem 77:61–67. https://doi.org/10.1111/j. 1432-1033.1977.tb11641.x
Eshita S, Roberto N, Beale J, Mamiya B, Workman R (1995) Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. J Antibiot (Tokyo) 48:1240–1247. https://doi.org/10.7164/antibiotics.48.1240
Volpon L, Tsan P, Majer Z, Vass E, Hollósi M, Noguéra V, Lancelin JM, Besson F (2007) NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of l-Asn1 in the natural iturinic antibiotics. Spectrochim Acta Part A Mol Biomol Spectrosc 67:1374–1381. https://doi.org/10.1016/j.saa.2006.10.027
Peypoux F, Marion D, Maget-Dana R, Ptak M, Das BC, Michel G (1985) Structure of bacillomycin F, a new peptidolipid antibiotic of the iturin group. Eur J Biochem 153:335– 340. https://doi.org/10.1111/j.1432-1033.1985.tb09307.x
Peypoux F, Pommier MT, Michel G, Marion D, Ptak M, Das BC (1986) Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J Antibiot (Tokyo) 39:636–641. https://doi.org/10.7164/antibiotics.39.636
Ma Z, Wang N, Hu J, Wang S (2012) Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A. J Antibiot (Tokyo) 65:317–322. https://doi.org/10.1038/ja.2012.19
Abderrahmani A, Tapi A, Nateche F, Chollet M, Leclère V, Wathelet B, Hacene H, Jacques P (2011) Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Appl Microbiol Biotechnol 92:571– 581. https://doi.org/10.1007/s00253-011-3453-6
Béchet M, Caradec T, Hussein W, Abderrahmani A, Chollet M, Leclére V, Dubois T, Lereclus D, Pupin M, Jacques P (2012) Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Appl Microbiol Biotechnol 95:593–600. https://doi.org/10.1007/s00253-012-4181-2
Gélis-Jeanvoine S, Canette A, Gohar M, Caradec T, Lemy C, Gominet M, Jacques P, Lereclus D, Slamti L (2017) Genetic and functional analyses of krs, a locus encoding kurstakin, a lipopeptide produced by Bacillus thuringiensis. Res Microbiol 168:356–368. https://doi.org/10.1016/j.resmic.2016.06.002
Luo C, Zhou H, Zou J, Wang X, Zhang R, Xiang Y, Chen Z (2015) Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl Microbiol Biotechnol 99: 1897–1910. https://doi.org/10.1007/s00253-014-6195-4
Aleti G, Lehner S, Bacher M, Compant S, Nikolic B, Plesko M, Schuhmacher R, Sessitsch A, Brader G (2016) Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environ Microbiol 18:2634–2645. https://doi.org/10.1111/1462-2920.13405
Zhao X, Kuipers OP (2016) Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 17. https://doi.org/10.1186/s12864-016-3224-y
Menkhaus M, Ullrich C, Kluge B, Vater J, Vollenbroich D, Kamp RM (1993) Structural and functional organization of the surfactin synthetase multienzyme system. J Biol Chem 268: 7678–7684
Grangemard I, Peypoux F, Wallach J, Das BC, Labbé H, Caille A, Genest M, Maget-Dana R, Ptak M, Bonmatin JM (1997) Lipopeptides with improved properties: structure by NMR, purification by HPLC and structure-activity relationships of new isoleucyl-rich surfactins. J Pept Sci 3:145–154. https://doi.org/10.1002/(SICI)1099-1387(199703)3:2<145::AID-PSC96>3.0.CO;2-Y
Peypoux F, Bonmatin J, Labbe H, Grangemard I, Das BC, Ptak M, Wallach J, Michel G, De Chimie I, Microbienne LDB, Claude U, Lyon B (1994) [Ala4]Surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Eur J Biochem 224:89–96
Moran S, Rai DK, Clark BR, Murphy CD (2009) Precursor-directed biosynthesis of fluorinated iturin A in Bacillus spp. Org Biomol Chem 7:644–646. https://doi.org/10.1039/b816345f
O’Connor NK, Hudson AS, Cobb SL, O’Neil D, Robertson J, Duncan V, Murphy CD (2014) Novel fluorinated lipopeptides from Bacillus sp. CS93 via precursor-directed biosynthesis. Amino Acids 46:2745–2752. https://doi.org/10.1007/s00726-014-1830-z
Kaneda T (1991) Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302. https://doi.org/10.14743/apem2017.1.239
Dhali D, Coutte F, Argüelles A, Auger S, Bidnenko V, Chataigné G, Lalk M, Niehren J, de Sousa J, Versari C, Jacques P (2017) Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C14isoform. Biotechnol J 12: 1–23. https://doi.org/10.1002/biot.201600574
Wang C, Cao Y, Wang Y, Sun L, Song H (2019) Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis. Microb Cell Fact 18. https://doi.org/10.1186/s12934-019-1139-4
Goss RJM, Shankar S, Fayad AA (2012) The generation of “unNatural” products: synthetic biology meets synthetic chemistry. Nat Prod Rep 29:870–889. https://doi.org/10.1039/c2np00001f
Kirschning A, Hahn F (2012) Merging chemical synthesis and biosynthesis: a new chapter in the total synthesis of natural products and natural product libraries. Angew Chem Int Ed 51: 4012–4022. https://doi.org/10.1002/anie.201107386
Winn M, Fyans JK, Zhuo Y, Micklefield J (2016) Recent advances in engineering nonribosomal peptide assembly lines. Nat Prod Rep. https://doi.org/10.1039/c5np00099h
Kalb D, Lackner G, Hoffmeister D (2014) Functional and phylogenetic divergence of fungal adenylate-forming reductases. Appl Environ Microbiol 80:6175–6183. https://doi.org/10. 1128/AEM.01767-14
Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505. https://doi.org/10.1016/S1074-5521(99)80082-9
Eppelmann K, Stachelhaus T, Marahiel MA (2002) Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 41:9718–9726. https://doi.org/10.1021/bi0259406
Schneider A, Marahiel MA (1998) Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbiol 169:404–410. https://doi.org/10.1007/s002030050590
Stachelhaus T, Schneider A, Marahiel MA (1996) Engineered biosynthesis of peptide antibiotics. Biochem Pharmacol 52:177–186. https://doi.org/10.1016/0006-2952(96)00111-6
Stachelhaus T, Schneider A, Marahiel MA (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269:69–72. https://doi.org/10. 1126/science.7604280
Mootz HD, Kessler N, Linne U, Eppelmann K, Schwarzer D, Marahiel MA (2002) Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. J Am Chem Soc 124:10980–10981. https://doi.org/10.1021/ja027276m
Jiang J, Gao L, Bie X, Lu Z, Liu H, Zhang C, Lu F, Zhao H (2016) Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiol 16:31. https://doi.org/10.1186/s12866-016-0645-3
Bozhüyük KAJ, Fleischhacker F, Linck A, Wesche F, Tietze A, Niesert CP, Bode HB (2018) De novo design and engineering of non-ribosomal peptide synthetases. Nat Chem 10:275– 281. https://doi.org/10.1038/NCHEM.2890
Bozhüyük KAJ, Linck A, Tietze A, Kranz J, Wesche F, Nowak S, Fleischhacker F, Shi YN, Grün P, Bode HB (2019) Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat Chem 11:653–661. https://doi.org/10.1038/s41557-019-0276-z
Brown AS, Calcott MJ, Owen JG, Ackerley DF (2018) Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Nat Prod Rep. https://doi.org/10.1039/c8np00036k
Linne U, Doekel S, Marahiel MA (2001) Portability of epimerization domain and role of peptidyl carrier protein on epimerization activity in nonribosomal peptide synthetases {. Biochemistry:15824–15834
Lundy TA, Mori S, Garneau-Tsodikova S (2018) Engineering bifunctional enzymes capable of adenylating and selectively methylating the side chain or core of amino acids. ACS Synth Biol 7:399–404. https://doi.org/10.1021/acssynbio.7b00426
Jiao S, Li X, Yu H, Yang H, Li X, Shen Z (2017) In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters. Biotechnol Bioeng 114:832– 842. https://doi.org/10.1002/bit.26197
Willenbacher J, Mohr T, Henkel M, Gebhard S, Mascher T, Syldatk C, Hausmann R (2016) Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on surfactin production. J Biotechnol 224:14–17. https://doi.org/10. 1016/j.jbiotec.2016.03.002
Dang Y, Zhao F, Liu X, Fan X, Huang R, Gao W, Wang S (2019) Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb Cell Fact 18. https://doi.org/10.1186/s12934-019-1121-1
Huigang S, Fengxia L, Chong Z, Xiaomei B, Guoqiang C, Zhaoxin L (2014) Improvement of fengycin production by bacillus amyloliquefaciens via promoter replacement at the fengycin operon with the p59 and PrepU promoters. J Pure Appl Microbiol 8:1071–1077
Tsuge K, Ohata Y, Shoda M (2001) Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrob Agents Chemother 45:3566–3573. https://doi.org/10.1128/AAC.45.12. 3566
Xu Y, Cai D, Zhang H, Gao L, Yang Y, Gao J, Li Y, Yang C, Ji Z, Yu J, Chen S (2020) Enhanced production of iturin A in Bacillus amyloliquefaciens by genetic engineering and medium optimization. Process Biochem 90:50–57. https://doi.org/10.1016/j.procbio.2019. 11.017
Hayashi K, Ohsawa T, Kobayashi K, Ogasawara N, Ogura M (2005) The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis. J Bacteriol 187:6659–6667. https://doi.org/10.1128/JB.187.19.6659
Wang P, Guo Q, Ma Y, Li S, Lu X, Zhang X (2015) DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2. Microbiol Res 178:42–50. https://doi.org/10.1016/j.micres.2015.06.006
Zhang Z, Ding ZT, Zhong J, Zhou JY, Shu D, Luo D, Yang J, Tan H (2017) Improvement of iturin A production in Bacillus subtilis ZK0 by overexpression of the comA and sigA genes. Lett Appl Microbiol 64:452–458. https://doi.org/10.1111/lam.12739
Coutte F, Niehren J, Dhali D, John M, Versari C, Jacques P (2015) Modeling leucine’s metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis. Biotechnol J 10:1216–1234. https://doi.org/10.1002/biot.201400541
Hayashi K, Kensuke T, Kobayashi K, Ogasawara N, Ogura M (2006) Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon. Mol Microbiol 59:1714–1729. https://doi.org/10.1111/j.1365-2958.2006.05059.x
Lopez D, Fischbach MA, Chu F, Losick R, Kolter R (2009) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc Natl Acad Sci 106:280–285. https://doi.org/10.1073/pnas.0810940106
Lopez D, Vlamakis H, Losick R, Kolter R (2009) Paracrine signaling in a bacterium. Genes Dev 23:1631–1638. https://doi.org/10.1101/gad.1813709
Zhang Y, Nakano S, Choi SY, Zuber P (2006) Mutational analysis of the Bacillus subtilis RNA polymerase alpha C-terminal domain supports the interference model of Spx-dependent repression. J Bacteriol 188:4300–4311. https://doi.org/10.1128/JB.00220-06
Ohsawa T, Tsukahara K, Sato T, Ogura M (2006) Superoxide stress decreases expression of srfA through inhibition of transcription of the comQXP quorum-sensing locus in Bacillus subtilis. J Biochem 139:203–211. https://doi.org/10.1093/jb/mvj023
Jung J, Yu KO, Ramzi AB, Choe SH, Kim SW, Han SO (2012) Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnol Bioeng 109:2349–2356. https://doi.org/10.1002/bit.24524
Besson F, Hourdou ML (1986) Effect of amino acids on the biosynthesis of beta-amino acids, constituents of Bacillomycins F. J Antibiot (Tokyo) 40:221–223
Peng W, Zhong J, Yang J, Ren Y, Xu T, Xiao S, Zhou J, Tan H (2014) The artificial neural network approach based on uniform design to optimize the fed-batch fermentation condition: application to the production of iturin A. Microb Cell Fact 13:1–10. https://doi.org/10.1186/1475-2859-13-54
Wu J, Liao J, Shieh C, Hsieh F, Liu Y (2018) Kinetic analysis on precursors for iturin A production from Bacillus amyloliquefaciens BPD1. J Biosci Bioeng 126:630–635. https://doi. org/10.1016/j.jbiosc.2018.05.002
Yue H, Zhong J, Li Z, Zhou J, Yang J, Wei H, Shu D, Luo D, Tan H (2021) Optimization of iturin A production from Bacillus subtilis ZK-H2 in submerge fermentation by response surface methodology. 3 Biotech 11
Wu Q, Zhi Y, Xu Y (2019) Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metab Eng 52:87–97. https://doi.org/10. 1016/j.ymben.2018.11.004
Li X, Yang H, Zhang D, Li X, Yu H, Shen Z (2015) Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis. J Ind Microbiol Biotechnol 42:93–103. https://doi.org/10.1007/s10295-014-1527-z
Maass D, Moya Ramírez I, García Román M, Jurado Alameda E, Ulson de Souza AA, Borges Valle JA, Altmajer Vaz D (2016) Two-phase olive mill waste (alpeorujo) as carbon source for biosurfactant production. J Chem Technol Biotechnol 91:1990–1997. https://doi.org/10.1002/jctb.4790
Nitschke M, Pastore GM (2004) Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Appl Biochem Biotechnol Part A Enzym Eng Biotechnol 112:163–172. https://doi.org/10.1385/ABAB:112:3:163
Cooper DG, Macdonald CR, Duff SJBB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412. https://doi.org/10.1128/aem.42.3.408-412.1981
Davis DA, Lynch HC, Varley J (2001) The application of foaming for the recovery of Surfactin from B. subtilis ATCC 21332 cultures. Enzyme Microb Technol 28:346–354. https://doi.org/10.1016/S0141-0229(00)00327-6
Yeh MS, Wei YH, Chang JS (2006) Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem 41:1799–1805. https://doi.org/10.1016/j. procbio.2006.03.027
Gong G, Zheng Z, Chen H, Yuan C, Wang P, Yao L, Yu Z (2009) Enhanced production of surfactin by Bacillus subtilis E8 mutant obtained by ion beam implantation. Food Technol Biotechnol 47:27–31
Guez JS, Chenikher S, Cassar JP, Jacques P (2007) Setting up and modelling of overflowing fed-batch cultures of Bacillus subtilis for the production and continuous removal of lipopeptides. J Biotechnol 131:67–75. https://doi.org/10.1016/j.jbiotec.2007.05.025
Chenikher S, Guez JS, Coutte F, Pekpe M, Jacques P, Cassar JP (2010) Control of the specific growth rate of Bacillus subtilis for the production of biosurfactant lipopeptides in bioreactors with foam overflow. Process Biochem 45:1800–1807. https://doi.org/10.1016/j.procbio.2010. 06.001
Chen C-Y, Baker SC, Darton RC (2006) Continuous production of biosurfactant with foam fractionation. J Chem Technol Biotechnol 81:1915–1922. https://doi.org/10.1002/jctb.1624
Jacques P, Savadogo A (2014) Handbook of indigenous foods involving alkaline fermentation. In: Sarkar PK, Nout MJR (eds) Handbook of indigenous foods involving alkaline fermentation, the fermented foods and beverages series. CRC Press, Taylor & Francis Group, pp 504–514
Savadogo A, Tapi A, Chollet M, Wathelet B, Traoré AS, Jacques P (2011) Identification of surfactin producing strains in Soumbala and Bikalga fermented condiments using polymerase chain reaction and matrix assisted laser desorption/ionization-mass spectrometry methods. Int J Food Microbiol 151:299–306. https://doi.org/10.1016/j.ijfoodmicro.2011.09.022
Ohno A, Ano T, Shoda M (1995) Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. J Ferment Bioeng 80:517–519. https://doi.org/10.1016/0922-338X(96)80930-5
Ohno A, Ano T, Shoda M (1995) Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnol Bioeng 47:209–214. https://doi.org/10.1002/bit.260470212
Fonseca De Faria A, Teodoro-Martinez DS, De Oliveira Barbosa GN, Gontijo Vaz B, Serrano Silva Í, Garcia JS, Tótola MR, Eberlin MN, Grossman M, Alves OL, Regina Durrant L (2011) Production and structural characterization of surfactin (C 14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem 46:1951–1957. https://doi.org/10.1016/j.procbio.2011.07.001
Gudiña EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6: 59. https://doi.org/10.3389/fmicb.2015.00059
Moya Ramírez I, Tsaousi K, Rudden M, Marchant R, Jurado Alameda E, García Román M, Banat IM (2015) Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresour Technol 198:231–236. https://doi.org/10.1016/j.biortech.2015. 09.012
Paraszkiewicz K, Bernat P, Kuśmierska A, Chojniak J, Płaza G (2018) Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. J Environ Manage 209:65–70. https://doi.org/10. 1016/j.jenvman.2017.12.033
Zhu Z, Zhang G, Luo Y, Ran W, Shen Q (2012) Production of lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate. Bioresour Technol 112:254–260. https://doi.org/10.1016/j.biortech.2012.02.057
Yeh MS, Wei YH, Chang JS (2005) Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnol Prog 21:1329–1334. https://doi.org/10.1021/bp050040c
Chtioui O, Dimitrov K, Gancel F, Nikov I (2010) Biosurfactants production by immobilized cells of Bacillus subtilis ATCC 21332 and their recovery by pertraction. Process Biochem 45: 1795–1799. https://doi.org/10.1016/j.procbio.2010.05.012
Gancel F, Montastruc L, Liu T, Zhao L, Nikov I (2009) Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles. Process Biochem 44:975–978. https://doi.org/10.1016/j.procbio.2009.04.023
Fahim S, Dimitrov K, Gancel F, Vauchel P, Jacques P, Nikov I (2012) Impact of energy supply and oxygen transfer on selective lipopeptide production by Bacillus subtilis BBG21. Bioresour Technol 126:1–6. https://doi.org/10.1016/j.biortech.2012.09.019
Nikolov L, Karamanev D, Mamatarkova V, Mehochev D, Dimitrov D (2002) Properties of the biofilm of Thiobacillus ferrooxidans formed in rotating biological contactor. Biochem Eng J 12:43–48. https://doi.org/10.1016/S1369-703X(02)00041-4
Chtioui O, Dimitrov K, Gancel F, Dhulster P, Nikov I (2012) Rotating discs bioreactor, a new tool for lipopeptides production. Process Biochem 47:2020–2024. https://doi.org/10.1016/j. procbio.2012.07.013
Chtioui O, Dimitrov K, Gancel F, Dhulster P, Nikov I (2014) Selective fengycin production in a modified rotating discs bioreactor. Bioprocess Biosyst Eng 37:107–114. https://doi.org/10. 1007/s00449-013-0964-9
Zune Q, Soyeurt D, Toye D, Ongena M, Thonart P, Delvigne F (2014) High-energy X-ray tomography analysis of a metal packing biofilm reactor for the production of lipopeptides by Bacillus subtilis. J Chem Technol Biotechnol 89:382–390. https://doi.org/10.1002/jctb.4128
Zune Q, Telek S, Calvo S, Salmon T, Alchihab M, Toye D, Delvigne F (2016) Influence of liquid phase hydrodynamics on biofilm formation on structured packing: optimization of surfactin production from Bacillus amyloliquefaciens. Chem Eng Sci 170:628–638. https://doi.org/10.1016/j.ces.2016.08.023
Brück HL, Delvigne F, Dhulster P, Jacques P, Coutte F (2019) Molecular strategies for adapting Bacillus subtilis 168 biosurfactant production to biofilm cultivation mode. Bioresour Technol 293:122090. https://doi.org/10.1016/j.biortech.2019.122090
De Roy K, Clement L, Thas O, Wang Y, Boon N (2012) Flow cytometry for fast microbial community fingerprinting. Water Res 46:907–919. https://doi.org/10.1016/j.watres.2011. 11.076
Delvigne F, Goffin P (2014) Microbial heterogeneity affects bioprocess robustness: dynamic single-cell analysis contributes to understanding of microbial populations. Biotechnol J 9:61– 72. https://doi.org/10.1002/biot.201300119
Brück HL, Coutte F, Dhulster P, Gofflot S, Jacques P, Delvigne F (2020) Growth dynamics of bacterial populations in a two-compartment biofilm bioreactor designed for continuous s ur f a c t i n bi os ynt he s i s . Mi c r oor ga ni s ms 8: 679. ht t ps: / / doi. or g/10. 3390/microorganisms8050679
Coutte F, Lecouturier D, Yahia SA, Leclère V, Béchet M, Jacques P, Dhulster P (2010) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol 87:499–507. https://doi.org/10.1007/s00253-010-2504-8
Dos Santos LFM, Coutte F, Ravallec R, Dhulster P, Tournier-Couturier L, Jacques P (2016) An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor. Bioresour Technol 218:944–952. https://doi.org/10.1016/j.biortech.2016.07.053
Coutte F, Lecouturier D, Leclère V, Béchet M, Jacques P, Dhulster P (2013) New integrated bioprocess for the continuous production, extraction and purification of lipopeptides produced by Bacillus subtilis in membrane bioreactor. Process Biochem 48:25–32. https://doi.org/10. 1016/j.procbio.2012.10.005
Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494. https://doi.org/10.1016/0006-291X (68)90503-2
Kim H-S, Yoon B-D, Lee C-H, Suh H-H, Oh H-M, Katsuragi T, Tani Y (1997) Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. J Ferment Bioeng 84:41–46
Willenbacher J, Zwick M, Mohr T, Schmid F, Syldatk C, Hausmann R (2014) Evaluation of different Bacillus strains in respect of their ability to produce surfactin in a model fermentation process with integrated foam fractionation. Appl Microbiol Biotechnol 98:9623–9632. https://doi.org/10.1007/s00253-014-6010-2
Chen HL, Juang RS (2008) Extraction of surfactin from fermentation broth with n-hexane in microporous PVDF hollow fibers: significance of membrane adsorption. J Membr Sci 325: 599–604. https://doi.org/10.1016/j.memsci.2008.08.017
Liu T, Montastruc L, Gancel F, Zhao L, Nikov I (2007) Integrated process for production of surfactin. Part 1: adsorption rate of pure surfactin onto activated carbon. Biochem Eng J 35: 333–340. https://doi.org/10.1016/j.bej.2007.01.025
Dhanarajan G, Rangarajan V, Sen R (2015) Dual gradient macroporous resin column chromatography for concurrent separation and purification of three families of marine bacterial lipopeptides from cell free broth. Sep Purif Technol 143:72–79. https://doi.org/10.1016/j. seppur.2015.01.025
Jauregi P, Coutte F, Catiau L, Lecouturier D, Jacques P (2013) Micelle size characterization of lipopeptides produced by B. subtilis and their recovery by the two-step ultrafiltration process. Sep Purif Technol 104:175–182. https://doi.org/10.1016/j.seppur.2012.11.017
Sen R, Swaminathan T (2005) Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochem 40:2953– 2958. https://doi.org/10.1016/j.procbio.2005.01.014
Rangarajan V, Dhanarajan G, Sen R (2014) Improved performance of cross-flow ultrafiltration for the recovery and purification of Ca2+ conditioned lipopeptides in diafiltration mode of operation. J Membr Sci 454:436–443. https://doi.org/10.1016/j.memsci.2013.12.047
Dimitrov K, Gancel F, Montastruc L, Nikov I (2008) Liquid membrane extraction of bio-active amphiphilic substances: recovery of surfactin. Biochem Eng J 42:248–253. https://doi.org/10.1016/j.bej.2008.07.005
Yuan J, Raza W, Huang Q, Shen Q (2012) The ultrasound-assisted extraction and identification of antifungal substances from B. amyloliquefaciens strain NJN-6 suppressing Fusarium oxysporum. J Basic Microbiol 52:721–730. https://doi.org/10.1002/jobm.201100560
Chen HL, Chen YS, Juang RS (2007) Separation of surfactin from fermentation broths by acid precipitation and two-stage dead-end ultrafiltration processes. J Membr Sci 299:114–121. https://doi.org/10.1016/j.memsci.2007.04.031
Wei Y-H, Wang L-C, Chen W-C, Chen S-Y (2010) Production and characterization of fengycin by indigenous Bacillus subtilis F29-3 originating from a potato farm. Int J Mol Sci 11:4526–4538. https://doi.org/10.3390/ijms11114526
Chen HL, Chen YS, Juang RS (2008) Recovery of surfactin from fermentation broths by a hybrid salting-out and membrane filtration process. Sep Purif Technol 59:244–252. https://doi. org/10.1016/j.seppur.2007.06.010
Chen HL, Lee YS, Wei YH, Juang RS (2008) Purification of surfactin in pretreated fermentation broths by adsorptive removal of impurities. Biochem Eng J 40:452–459. https://doi.org/10.1016/j.bej.2008.01.020
Carolin CF, Kumar PS, Ngueagni PT (2021) A review on new aspects of lipopeptide biosurfactant: types, production, properties and its application in the bioremediation process. J Hazard Mater 407:124827. https://doi.org/10.1016/j.jhazmat.2020.124827
Théatre A, Cano-prieto C, Bartolini M, Laurin Y, Deleu M, Niehren J, Fida T, Gerbinet S, Alanjary M, Medema MH, Léonard A, Lins L, Arabolaza A, Gramajo H, Gross H, Jacques P (2021) The surfactin-like lipopeptides from Bacillus spp.: natural biodiversity and synthetic biology for a broader application range. Front Bioeng Biotechnol 9. https://doi.org/10.3389/fbioe.2021.623701
Grangemard I, Wallach J, Maget-Dana R, Peypoux F (2001) Lichenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol 90:199–210. https://doi.org/10.1385/ABAB:90:3:199
Ishigami Y, Osman M, Nakahara H, Sano Y, Ishiguro R, Matsumoto M (1995) Significance of beta-sheet formation for micellization and surface adsorption of surfactin. Colloids Surf B Biointerfaces 4:341–348
Thimon L, Peypoux F, Marget-Dana R, Michel G (1992) Surface-active properties of antifungal lipopeptides produced by Bacillus subtilis. J Am Oil Chem Soc 69:92–93
Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M (2005) Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta 1726:87–95. https://doi.org/10.1016/j.bbagen.2005.06.015
Deleu M, Bouffioux O, Razafindralambo H, Paquot M, Hbid C, Thonart P, Jacques P, Brasseur R (2003) Interaction of surfactin with membranes: a computational approach. Langmuir 19:3377–3385
Razafindralambo H, Thonart P, Paquot M (2004) Dynamic and equilibrium surface tensions of surfactin aqueous solutions. J Surfactant Deterg 7:41–46. https://doi.org/10.1007/s11743-004-0286-x
De Araujo LLGC, Sodré LGP, Brasil LR, Domingos DF, de Oliveira VM, da Cruz GF (2019) Microbial enhanced oil recovery using a biosurfactant produced by Bacillus safensis isolated from mangrove microbiota – part I biosurfactant characterization and oil displacement test. J Petrol Sci Eng 180:950–957. https://doi.org/10.1016/j.petrol.2019.06.031
Razafindralambo H (1996) Contribution à l’étude des propriétés tensioactives de lipopeptides de Bacillus subtilis
Shakerifard P, Gancel F, Jacques P, Faille C (2009) Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to st ai nl ess st eel and Teflon. Bi ofoul i ng 25: 533–541. ht t ps: / / doi. org/10. 1080/08927010902977943
Diallo MM, Vural C, Şahar U, Ozdemir G (2019) Kurstakin molecules facilitate diesel oil assimilation by acinetobacter haemolyticus strain 2SA through overexpression of alkane hydroxylase genes strain 2SA through overexpression of alkane hydroxylase genes. Environ Technol. https://doi.org/10.1080/09593330.2019.1689301
Yakimov M, Fredrickson H, Timmis K (1996) Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnol Appl Biochem 23:13–18
Habe H, Taira T, Sato Y, Imura T, Ano T (2019) Evaluation of yield and surface tension-lowering activity of iturin A produced by Bacillus subtilis RB14. J Oleo Sci 68:1157–1162
Razafindralambo H, Popineau Y, Deleu M, Hbid C, Jacques P, Thonart P, Paquot M (1997) Surface-active properties of surfactin/iturin A mixtures produced by Bacillus subtilis. Langmuir 13:6026–6031
Deleu M, Razafindralambo H, Popineau Y, Jacques P, Thonart P, Paquot M (1999) Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surf A Physicochem Eng Asp 152:3–10. https://doi.org/10.1016/S0927-7757(98)00627-X
de Araujo LV, Reis Guimaraes C, da Silva Marquita RL, Santiago VM, de Souza MP, Nitschke M, Guimarares Freire DM (2016) Rhamnolipid and surfactin: anti-adhesion/ antibiofilm and antimicrobial effects. Food Control 63:171–178. https://doi.org/10.1016/j. foodcont.2015.11.036
Jemil N, Hmidet N, Ayed HB, Nasri M (2018) Physicochemical characterization of Enterobacter cloacae C3 lipopeptides and their applications in enhancing diesel oil biodegradation. Process Saf Environ Prot 117:399–407. https://doi.org/10.1016/j.psep.2018.05.018
Leclère V, Marti R, Béchet M, Fickers P, Jacques P (2006) The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186:475–483. https://doi.org/10.1007/s00203-006-0163-z
Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754
Hamley IW, Dehsorkhi A, Jauregi P, Seitsonen J, Ruokolainen J, Coutte F, Chataigné G, Jacques P (2013) Self-assembly of three bacterially-derived bioactive lipopeptides. Soft Matter 9:9572–9578. https://doi.org/10.1039/c3sm51514a
Grau A, Gomez-Fernandez JC, Peypoux F, Ortiz A (2001) Aggregational behavior of aqueous dispersions of the antifungal lipopeptide iturin A. Peptides 22:1–5
Thimon L, Peypoux F, Wallach J, Michel G (1993) Ionophorous biosurfactant and sequestering properties of surfactin, a biosurfactant from Bacillus subtills. Colloids Surf B Biointerfaces 1:57–62
Habe H, Taira T, Imura T (2018) Surface activity and Ca2+-dependent aggregation property of lichenysin produced by Bacillus licheniformis NBRC 104464. J Oleo Sci 67:1307–1313
Rautenbach M, Swart P, van der Merwe MJ (2000) The interaction of analogues of the antimicrobial lipopeptide, iturin A2, with alkali metal ions. Bioorg Med Chem 8:2539–2548
Deleu M, Lorent J, Lins L, Brasseur R, Braun N, El Kirat K, Nylander T, Dufrêne YF, Mingeot-Leclercq MP (2013) Effects of surfactin on membrane models displaying lipid phase separation. Biochim Biophys Acta Biomembr 1828:801–815. https://doi.org/10.1016/j. bbamem.2012.11.007
Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94:2667–2679. https://doi.org/10.1529/biophysj. 107.114090
Etchegaray A, de Castro Bueno C, de Melo IS, Tsai SM, de Fátima Fiore M, Silva-Stenico ME, de Moraes LAB, Teschke O (2008) Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Arch Microbiol 190:611–622. https://doi.org/10. 1007/s00203-008-0409-z
Gong AD, Li HP, Yuan QS, Song XS, Yao W, He WJ, Zhang JB, Liao YC (2015) Antagonistic mechanism of iturin a and plipastatin a from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One 10:e0116871. https://doi.org/10.1371/journal.pone.0116871
Wu T, Chen M, Zhou L, Lu F, Bie X, Lu Z (2020) Bacillomycin D effectively controls growth of Malassezia globosa by disrupting the cell membrane. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-020-10462-w
Zakharova AA, Efimova SS, Malev VV, Ostroumova OS (2019) Fengycin induces ion channels in lipid bilayers mimicking target fungal cell membranes. Sci Rep 9. https://doi. org/10.1038/s41598-019-52551-5
Zeriouh H, Romero D, García-Gutiérrez L, Cazorla FM, De Vicente A, Pérez-García A (2011) The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant Microbe Interact 24:1540– 1552. https://doi.org/10.1094/MPMI-06-11-0162
Grau A, Gómez Fernández JC, Peypoux F, Ortiz A (1999) A study on the interactions of surfactin with phospholipid vesicles. Biochim Biophys Acta Biomembr 1418:307–319. https://doi.org/10.1016/S0005-2736(99)00039-5
Tao Y, Bie X, Lv F, Zhao H, Lu Z (2011) Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer. J Microbiol 49: 146–150. https://doi.org/10.1007/s12275-011-0171-9
Wise C, Falardeau J, Hagberg I, Avis TJ (2014) Cellular lipid composition affects sensitivity of plant pathogens to fengycin, an antifungal compound produced by Bacillus subtilis strain CU12. Phytopathology 104:1036–1041. https://doi.org/10.1094/PHYTO-12-13-0336-R
Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z (2014) Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control 36:8– 14. https://doi.org/10.1016/j.foodcont.2013.07.034
Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, Huo R, Wu H, Borriss R, Gao X (2017) Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol 83:1075–1092. https://doi.org/10.1128/AEM.01075-17
Hanif A, Zhang F, Li P, Li C, Xu Y, Zubair M, Zhang M, Jia D, Zhao X, Liang J, Majid T, Yan J, Farzand A, Wu H, Gu Q, Gao X (2019) Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins (Basel) 11. https://doi.org/10.3390/toxins11050295
Jin P, Wang H, Tan Z, Xuan Z, Dahar GY, Li QX, Miao W, Liu W (2020) Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides. Penz Pestic Biochem Physiol 163:102–107. https://doi.org/10.1016/j. pestbp.2019.11.004
Liu J, Zhou T, He D, Li X, Wu H, Liu W, Gao X (2011) Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. J Mol Microbiol Biotechnol 20:43–52. https://doi.org/10.1159/000323501
Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P (2014) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169:533–540. https://doi.org/10.1016/j.micres.2013.12.001
Zhang L, Sun C (2018) Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl Environ Microbiol 84. https://doi.org/10.1128/AEM.00445-18
Medeot DB, Fernandez M, Morales GM, Jofré E (2020) Fengycins from Bacillus amyloliquefaciens MEP218 exhibit antibacterial activity by producing alterations on the cell surface of the pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Front Microbiol 10:3107. https://doi.org/10.3389/fmicb.2019.03107
Villegas-Escobar V, González-Jaramillo LM, Ramírez M, Moncada RN, Sierra-Zapata L, Orduz S, Romero-Tabarez M (2018) Lipopeptides from Bacillus sp. EA-CB0959: active metabolites responsible for in vitro and in vivo control of Ralstonia solanacearum. Biol Control 125:20–28. https://doi.org/10.1016/j.biocontrol.2018.06.005
Mihalache G, Balaes T, Gostin I, Stefan M, Coutte F, Krier F (2018) Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ Sci Pollut Res 25:29784–29793. https://doi.org/10.1007/s11356-017-9162-7
Tanaka K, Amaki Y, Ishihara A, Nakajima H (2015) Synergistic effects of [Ile 7] surfactin homologues with Bacillomycin D in suppression of gray mold disease by Bacillus amyloliquefaciens biocontrol strain SD-32. J Agric Food Chem 63:5344–5353. https://doi. org/10.1021/acs.jafc.5b01198
Wang Y, Zhang C, Liang J, Wang L, Gao W, Jiang J, Chang R (2020) Surfactin and fengycin B extracted from Bacillus pumilus W-7 provide protection against potato late blight via distinct and synergistic mechanisms. Appl Microbiol Biotechnol 104:7467–7481. https://doi.org/10. 1007/s00253-020-10773-y
Debois D, Jourdan E, Smargiasso N, Thonart P, De Pauw E, Ongena M (2014) Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem 86:4431–4438. https://doi.org/10.1021/ac500290s
Fan H, Zhang Z, Li Y, Zhang X, Duan Y, Wang Q (2017) Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Front Microbiol 8:1973. https://doi.org/10.3389/fmicb.2017.01973
Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x
Sarwar A, Hassan MN, Imran M, Iqbal M, Majeed S, Brader G, Sessitsch A, Hafeez FY (2018) Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol Res 209:1–13. https://doi.org/10.1016/j.micres.2018.01.006
Almoneafy AA, Kakar KU, Nawaz Z, Li B, Saand MA, Chun-lan Y, Xie GL (2014) Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis 63:59–70. https://doi.org/10.1007/s13199-014-0288-9
Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319. https://doi.org/10.1104/pp.103.028712
Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15:848–864. https://doi.org/10.1111/j. 1462-2920.2012.02860.x
Xiu P, Liu R, Zhang D, Suna C (2017) Pumilacidin-like lipopeptides derived from marine bacterium Bacillus sp. strain 176 suppress the motility of Vibrio alginolyticus. Appl Environ Microbiol 83. https://doi.org/10.1128/AEM.00450-17
Hoefler BC, Gorzelnik KV, Yang JY, Hendricks N, Dorrestein PC, Straight PD (2012) Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition. Proc Natl Acad Sci U S A 109:13082–13087. https://doi. org/10.1073/pnas.1205586109
Straight PD, Willey JM, Kolter R (2006) Interactions between Streptomyces coelicolor and Bacillus subtilis: role of surfactants in raising aerial structures. J Bacteriol 188:4918–4925. https://doi.org/10.1128/JB.00162-06
Qi G, Zhu F, Du P, Yang X, Qiu D, Yu Z, Chen J, Zhao X (2010) Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides 31:1978–1986. https://doi.org/10.1016/j.peptides.2010.08.003
Fickers P, Guez J-S, Damblon C, Leclère V, Béchet M, Jacques P, Joris B (2009) High-level biosynthesis of the anteiso-C17 isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl Environ Microbiol 75:4636–4640. https://doi.org/10.1128/AEM.00548-09
Loiseau C, Schlusselhuber M, Bigot R, Bertaux J, Berjeaud J-M, Verdon J (2015) Surfactin from Bacillus subtilis displays an unexpected anti-Legionella activity. Appl Microbiol Biotechnol 99:5083–5093. https://doi.org/10.1007/s00253-014-6317-z
Ruiz A, Pinazo A, Pérez L, Manresa A, Marqués AM (2017) Green catanionic gemini surfactant-lichenysin mixture: improved surface, antimicrobial, and physiological properties. ACS Appl Mater Interfaces 9:22121–22131. https://doi.org/10.1021/acsami.7b03348
Sabaté DC, Audisio MC (2013) Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains. Microbiol Res 168:125–129. https://doi.org/10.1016/j.micres.2012.11.004
Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713
Liu X, Tao X, Zou A, Yang S, Zhang L, Mu B (2010) Effect of themicrobial lipopeptide on tumor cell lines: apoptosis induced by disturbing the fatty acid composition of cell membrane. Protein Cell 1:584–594. https://doi.org/10.1007/s13238-010-0072-4
Kikuchi T, Hasumi K (2002) Enhancement of plasminogen activation by surfactin C: augmentation of fibrinolysis in vitro and in vivo. Biochim Biophys Acta 1596:234–245
Hwang YH, Park BK, Lim JH, Kim MS, Park SC, Hwang MH, Yun HI (2007) Lipopolysaccharide-binding and neutralizing activities of surfactin C in experimental models of septic shock. Eur J Pharmacol 556:166–171. https://doi.org/10.1016/j.ejphar.2006.10.031
Hwang Y-H, Kim M-S, Song I-B, Park B-K, Lim J-H, Park S-C, Yun H-I (2009) Subacute (28 day) toxicity of surfactin C, a lipopeptide produced by Bacillus subtilis, in rats. J Heal Sci 55:351–355
Zhao H, Li J, Zhang Y, Lei S, Zhao X, Shao D, Jiang C, Shi J, Sun H (2018) Potential of iturins as functional agents: safe, probiotic, and cytotoxic to cancer cells. Food Funct 9:5580–5587. https://doi.org/10.1039/c8fo01523f
Dey G, Bharti R, Banerjee I, Das K (2016) Pre-clinical risk assessment and therapeutic potential of antitumor lipopeptide ‘Iturin A’ in an in vivo and in vitro model. RSC Adv:71612–71623. https://doi.org/10.1039/c6ra13476a
Dehghan-Noudeh G, Housaindokht M, Bazzaz BSF (2005) Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J Microbiol 43:272–276
Symmank H, Franke P, Saenger W, Bernhard F (2002) Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Eng 15:913–921. https://doi.org/10.1093/protein/15.11.913
Quentin MJ, Besson F, Peypoux F, Michel G (1982) Action of peptidolipidic antibiotics of the iturin group on erythrocytes. Effect of some lipids on hemolysis. Biochim Biophys Acta 684: 207–211. https://doi.org/10.1016/0005-2736(82)90007-4
Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta Biomembr 1713:51–56. https://doi.org/10.1016/j. bbamem.2005.05.003
Huang X, Lu Z, Zhao H, Bie X, Lu F, Yang S (2006) Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus, porcine parvovirus, newcastle disease virus and infectious bursal disease virus in vitro. Int J Pept Res Ther 12: 373–377. https://doi.org/10.1007/s10989-006-9041-4
Johnson BA, Hage A, Kalveram B, Mears M, Plante JA, Rodriguez SE, Ding Z, Luo X, Bente D, Bradrick SS, Freiberg AN, Popov V, Rajsbaum R, Rossi S, Russell WK, Menachery VD (2019) Peptidoglycan-associated cyclic lipopeptide disrupts viral infectivity. J Virol 93:1– 15
Kracht M, Rokos H, Özel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot (Tokyo) 52:613– 619. https://doi.org/10.7164/antibiotics.52.613
Vollenbroich D, Muhsin O, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289– 297
Wang X, Hu W, Zhu L, Yang Q (2017) Bacillus subtilis and surfactin inhibit the transmissible gastroenteritis virus from entering the intestinal epithelial cells. Biosci Rep 37:1–10. https://doi.org/10.1042/BSR20170082
Yuan L, Zhang S, Peng J, Li Y, Yang Q (2019) Synthetic surfactin analogues have improved anti-PEDV properties. PLoS One 14:1–14. https://doi.org/10.1371/journal.pone.0215227
Yuan L, Zhang S, Wang Y, Li Y, Wang X, Yang Q (2018) Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses. J Virol 92:1–19. https://doi.org/10. 1128/jvi.00809-18
Kim SY, Kim JY, Kim SH, Bae HJ, Yi H, Yoon SH, Koo BS, Kwon M, Cho JY, Lee CE, Hong S (2007) Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett 581:865–871. https://doi.org/10.1016/j.febslet.2007.01.059
Park SY, Kim J-H, Lee YJ, Lee SJ, Kim Y (2012) Surfactin suppresses TPA-induced breast cancer cell invasion through the inhibition of MMP-9 expression. Int J Oncol 42:287–296. https://doi.org/10.3892/ijo.2012.1695
Cao X, Wang AH, Jiao RZ, Wang CL, Mao DZ, Yan L, Zeng B (2009) Surfactin induces apoptosis and G2/M arrest in human breast cancer MCF-7 cells through cell cycle factor regulation. Cell Biochem Biophys 55:163–171. https://doi.org/10.1007/s12013-009-9065-4
Cao X, Wang A, Wang C, Mao D, Lu M, Cui Y, Jiao R (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact 183:357–362. https://doi.org/10.1016/j.cbi.2009.11.027
Yin H, Guo C, Wang Y, Liu D, Lv Y, Lv F, Lu Z (2013) Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis. Anticancer Drugs 24:587–598. https://doi.org/10.1097/CAD.0b013e3283611395
Lee JH, Nam SH, Seo WT, Yun HD, Hong SY, Kim MK, Cho KM (2012) The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells. Food Chem 131:1347–1354. https://doi.org/10.1016/j.foodchem.2011.09.133
Dey G, Bharti R, Dhanarajan G, Das S, Dey KK, Kumar BNP, Sen R, Mandal M (2015) Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer. Sci Rep 5:1–14. https://doi.org/10.1038/srep10316
Sivapathasekaran C, Das P, Mukherjee S, Saravanakumar A, Mandal M, Sen R (2010) Marine bacterium derived lipopeptides: characterization and cytotoxic activity against cancer cell lines. Int J Pept Res Ther 16:215–222. https://doi.org/10.1007/s10989-010-9212-1
Cheng W, Feng YQ, Ren J, Jing D, Wang C (2016) Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma 63:215–222. https://doi. org/10.4149/206
Wang CL, Ng TB, Yuan F, Liu ZK, Liu F (2007) Induction of apoptosis in human leukemia K562 cells by cyclic lipopeptide from Bacillus subtilis natto T-2. Peptides 28:1344–1350. https://doi.org/10.1016/j.peptides.2007.06.014
Kameda Y, Kanatomo S (1968) Abstracts papers, The 88th annual meeting of pharmaceutical society of Japan
Zhao H, Shao D, Jiang C, Shi J, Li Q (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101:5951–5960. https://doi.org/10.1007/s00253-017-8396-0
Kim K, Jung SY, Lee DK, Jung JK, Park JK, Kim DK, Lee CH (1998) Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2. Biochem Pharmacol 55:975–985
Hwang MH, Lim JH, Yun HI, Rhee MH, Cho JY, Hsu WH, Park SC (2005) Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1β and inducible nitric oxide synthase and nitric oxide production in murine RAW 264.7 cells. Biotechnol Lett 27: 1605–1608. https://doi.org/10.1007/s10529-005-2515-1
Kim Dae S, Cho JY, Park HJ, Im CR, Lim JH, Yun HI, Park SC, Kim SK, Rhee MH (2006) A comparison of the anti-inflammatory activity of surfactin A, B, C, and D from Bacillus subtilis. J Microbiol Biotechnol 16:1656–1659
Takahashi T, Ohno O, Ikeda Y, Sawa R, Homma Y, Igarashi M, Umezawa K (2006) Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin. J Antibiot (Tokyo) 59:35–43. https://doi.org/10.1038/ja.2006.6
Zhang Y, Liu C, Dong B, Ma X, Hou L, Cao X, Wang C (2015) Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 38: 756–764. https://doi.org/10.1007/s10753-014-9986-y
Park SY, Kim J-H, Lee SJ, Kim Y (2013) Surfactin exhibits neuroprotective effects by inhibiting amyloid β-mediated microglial activation. Neurotoxicology 38:115–123. https://doi.org/10.1016/j.neuro.2013.07.004
Park SY, Kim YH (2009) Surfactin inhibits immunostimulatory function of macrophages through blocking NK-κB, MAPK and Akt pathway. Int Immunopharmacol 9:886–893. https://doi.org/10.1016/j.intimp.2009.03.013
Xu W, Liu H, Wang X, Yang Q (2016) Surfactin induces maturation of dendritic cells in vitro. Biosci Rep 36:1–7. https://doi.org/10.1042/BSR20160204
Gao Z, Wang S, Qi G, Pan H, Zhang L, Zhou X, Liu J, Zhao X, Wu J (2012) A surfactin cyclopeptide of WH1fungin used as a novel adjuvant for intramuscular and subcutaneous immunization in mice. Peptides 38:163–171. https://doi.org/10.1016/j.peptides.2012.08.021
Pan H, Zhao X, Gao Z, Qi G (2014) A surfactin lipopeptide adjuvanted hepatitis B vaccines elicit enhanced humoral and cellular immune responses in mice. Protein Pept Lett 21:901–910
Gao Z, Zhao X, Yang T, Shang J, Shang L, Mai H, Qi G (2014) Immunomodulation therapy of diabetes by oral administration of a surfactin lipopeptide in NOD mice. Vaccine 32:6812– 6819. https://doi.org/10.1016/j.vaccine.2014.08.082
Mhatre PH, Karthik C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, Ramkumar G, Saranya C, Shanmuganathan R (2019) Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control. Biocatal Agric Biotechnol 17: 119–128. https://doi.org/10.1016/j.bcab.2018.11.009
Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347– 375. https://doi.org/10.1146/annurev-phyto-082712-102340
Rashid MH-O, Chung YR (2017) Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front Plant Sci 8:1–11. https://doi.org/10.3389/fpls.2017. 01816
Bigeard J, Colcombet J, Hirt H (2015) Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant 8:521–539. https://doi.org/10.1016/j.molp.2014.12.022
Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724. https://doi.org/10.1094/MPMI-19-0711
Henry G, Deleu M, Jourdan E, Thonart P, Ongena M (2011) The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell Microbiol 13:1824–1837. https://doi.org/10.1111/j.1462-5822.2011. 01664.x
Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22:456–468. https://doi.org/10.1094/MPMI-22-4-0456
Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, Dommes J, Ongena M (2014) Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant Microbe Interact 27:87–100. https://doi.org/10.1094/MPMI-09-13-0262-R
Chowdhury SP, Uhl J, Grosch R, Alquéres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A (2015) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant Microbe Interact 28:984–995. https://doi. org/10.1094/mpmi-03-15-0066-r
García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses. J Microbial Biotechnol 6:264–274. https://doi.org/10.1111/1751-7915. 12028
Le Mire G, Siah A, Brisset MN, Gaucher M, Deleu M, Jijakli MH (2018) Surfactin protects wheat against Zymoseptoria tritici and activates both salicylic acid-and jasmonic acid-dependent defense responses. Agriculture 8. https://doi.org/10.3390/agriculture8010011
Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny J-L, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090. https://doi.org/10.1111/j.1462-2920. 2006.01202.x
Rodríguez J, Tonelli ML, Figueredo MS, Ibáñez F, Fabra A (2018) The lipopeptide surfactin triggers induced systemic resistance and priming state responses in Arachis hypogaea L. Eur J Plant Pathol 152:845–851. https://doi.org/10.1007/s10658-018-1524-6
Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, Clément C, Barka EA, Jacquard C, Dorey S (2015) Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16:177–187. https://doi.org/10.1111/mpp. 12170
Han Q, Wu F, Wang X, Qi H, Shi L, Ren A, Liu Q, Zhao M, Tang C (2015) The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ Microbiol 17:1166–1188. https://doi.org/10.1111/1462-2920.12538
Mejri S, Siah A, Coutte F, Magnin-Robert M, Randoux B, Tisserant B, Krier F, Jacques P, Reignault P, Halama P (2018) Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis. Environ Sci Pollut Res 25:29822–29833. https://doi. org/10.1007/s11356-017-9241-9
Park K, Park Y-S, Ahamed J, Dutta S, Ryu H, Lee S-H, Balaraju K, Manir M, Moon S-S (2016) Elicitation of induced systemic resistance of chili pepper by iturin A analogs derived from Bacillus vallismortis EXTN-1. Can J Plant Sci 96:564–570. https://doi.org/10.1139/cjps-2015-0199
Yamamoto S, Shiraishi S, Suzuki S (2015) Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett Appl Microbiol 60:379–386. https://doi.org/10.1111/lam.12382
Farzand A, Moosa A, Zubair M, Khan AR, Massawe VC, Tahir HAS, Sheikh TMM, Ayaz M, Gao X (2019) Suppression of Sclerotinia sclerotiorum by the induction of systemic resistance and regulation of antioxidant pathways in tomato using fengycin produced by Bacillus amyloliquefaciens FZB42. Biomolecules 9. https://doi.org/10.3390/biom9100613
Li Y, Héloir MC, Zhang X, Geissler M, Trouvelot S, Jacquens L, Henkel M, Su X, Fang X, Wang Q, Adrian M (2019) Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation. Mol Plant Pathol 20:1037–1050. https://doi.org/10.1111/mpp.12809
Kearns DB, Chu F, Rudner R, Losick R (2004) Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol 52: 357–369. https://doi.org/10.1111/j.1365-2958.2004.03996.x
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. https://doi.org/10.1038/nrmicro.2016.94
Pandin C, Le Coq D, Canette A, Aymerich S, Briandet R (2017) Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? J Microbial Biotechnol 10: 719–734. https://doi.org/10.1111/1751-7915.12693
Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro2960
Molina-Santiago C, Pearson JR, Navarro Y, Berlanga-Clavero MV, Caraballo-Rodriguez AM, Petras D, García-Martín ML, Lamon G, Haberstein B, Cazorla FM, de Vicente A, Loquet A, Dorrestein PC, Romero D (2019) The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat Commun 10:1919. https://doi.org/10.1038/s41467-019-09944-x
Pandin C, Darsonval M, Mayeur C, Le Coq D, Aymerich S, Briandet R (2019) Biofilm formation and synthesis of antimicrobial compounds by the biocontrol agent Bacillus velezensis QST713 in an Agaricus bisporus compost micromodel. Appl Environ Microbiol 85:1–13. https://doi.org/10.1128/AEM.00327-19
Pisithkul T, Schroeder JW, Trujillo EA, Yeesin P, Stevenson DM, Chaiamarit T, Coon JJ, Wang JD, Amador-Noguez D (2019) Metabolic remodeling during biofilm development of Bacillus subtilis. MBio 10:1–32. https://doi.org/10.1128/mBio.00623-19
Fan B, Chen XH, Budiharjo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J Biotechnol 151:303–311. https://doi.org/10.1016/j.jbiotec.2010.12.022
Thérien M, Kiesewalter HT, Auria E, Charron-Lamoureux V, Wibowo M, Maróti G, Kovács ÁT, Beauregard PB (2020) Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis. Biofilm 2:100021. https://doi.org/10.1016/j.bioflm. 2020.100021
Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol. https://doi. org/10.1038/nrmicro2405
Angelini TE, Roper M, Kolter R, Weitz DA, Brenner MP (2009) Bacillus subtilis spreads by surfing on waves of surfactant. Proc Natl Acad Sci U S A 106:18109–18113. https://doi.org/10.1073/pnas.0905890106
Julkowska D, Obuchowski M, Holland IB, Séror SJ (2005) Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: Critical effects of surfactin and the composition of the medium. J Bacteriol 187:65–76. https://doi.org/10.1128/JB.187.1.65-76.2005
Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590. https://doi.org/10.1046/j.1365-2958.2003.03584.x
Kinsinger RF, Shirk MC, Fall R (2003) Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol 185:5627–5631. https://doi.org/10. 1128/JB.185.18.5627-5631.2003
Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, Xiong H, Helmann JD, Cai Y (2018) Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-22782-z
Ghelardi E, Salvetti S, Ceragioli M, Gueye SA, Celandroni F, Senesi S (2012) Contribution of surfactin and SwrA to flagellin expression, swimming, and surface motility in Bacillus subtilis. Appl Environ Microbiol 78:6540–6544. https://doi.org/10.1128/AEM.01341-12
Dixit S, Rutuja D, Prasad E (2020) Surfactants market by type (anionic, non-ionic, cationic, amphoteric, and others) and application (household detergents, personal care, industrial & institutional cleaners, food processing, oilfield chemicals, agricultural chemicals, textiles, Emulsion Po Portland
Santos VSV, Silveira E, Pereira BB (2019) Toxicity and applications of surfactin for health and environmental biotechnology. J Toxicol Environ Heal Part B Crit Rev 21:382–399. https://doi.org/10.1080/10937404.2018.1564712
Gao S, Wu H, Yu X, Qian L, Gao X (2016) Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biol Control 98:11– 17. https://doi.org/10.1016/j.biocontrol.2016.03.011
Stanley NR, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924. https://doi.org/10.1111/j. 1365-2958.2004.04036.x
Asaka O, Shoda M (1996) Biocontrol of Rizhoctonia solani Damping-off of Tomato with Bacillus sutlis RB14. Appl Environ Microbiol 62:4081–4085
Chandler S, Van Hese N, Coutte F, Jacques P, Höfte M, De Vleesschauwer D (2015) Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.). Physiol Mol Plant Pathol 91:20–30. https://doi.org/10.1016/j.pmpp.2015.05.010
Deravel J, Lemière S, Coutte F, Krier F, Van Hese N, Béchet M, Sourdeau N, Höfte M, Leprêtre A, Jacques P (2014) Mycosubtilin and surfactin are efficient, low ecotoxicity molecules for the biocontrol of lettuce downy mildew. Appl Microbiol Biotechnol 98:6255– 6264. https://doi.org/10.1007/s00253-014-5663-1
Zouari R, Besbes S, Ellouze-Chaabouni S, Ghribi-Aydi D (2016) Cookies from composite wheat-sesame peels flours: dough quality and effect of Bacillus subtilis SPB1 biosurfactant addition. Food Chem 194:758–769. https://doi.org/10.1016/j.foodchem.2015.08.064
Mnif I, Besbes S, Ellouze-Ghorbel R, Ellouze-Chaabouni S, Ghribi D (2013) Improvement of bread dough quality by Bacillus subtilis SPB1 biosurfactant addition: optimized extraction using response surface methodology. J Sci Food Agric 93:3055–3064. https://doi.org/10.1002/jsfa.6139
Huang X, Suo J, Cui Y (2011) Optimization of antimicrobial activity of surfactin and polylysine against Salmonella enteritidis in milk evaluated by a response surface methodology. Foodborne Pathog Dis 8:439–443. https://doi.org/10.1089/fpd.2010.0738
Joe MM, Bradeeba K, Parthasarathi R, Sivakumaar PK, Chauhan PS, Tipayno S, Benson A, Sa T (2012) Development of surfactin based nanoemulsion formulation from selected cooking oils: evaluation for antimicrobial activity against selected food associated microorganisms. J Taiwan Inst Chem Eng 43:172–180. https://doi.org/10.1016/j.jtice.2011.08.008
Alvarez VM, Guimarães CR, Jurelevicius D, de Castilho LVA, de Sousa JS, da Mota FF, Freire DMG, Seldin L (2020) Microbial enhanced oil recovery potential of surfactin-producing Bacillus subtilis AB2.0. Fuel 272:117730. https://doi.org/10.1016/j.fuel.2020.117730
Long X, He N, He Y, Jiang J, Wu T (2017) Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier. Bioresour Technol 241:200–206. https://doi.org/10.1016/j.biortech.2017.05.120
Schaller KD, Fox SL, Bruhn DF, Noah KS, Bala GA (2004) Characterization of surfactin from Bacillus subtilis for application as an agent for enhanced oil recovery. Appl Biochem Biotechnol Part A Enzym Eng Biotechnol 115:827–836. https://doi.org/10.1007/978-1-59259-837-3_67
Lai CC, Huang YC, Wei YH, Chang JS (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614. https://doi. org/10.1016/j.jhazmat.2009.01.017
Whang LM, Liu PWG, Ma CC, Cheng SS (2009) Application of rhamnolipid and surfactin for enhanced diesel biodegradation-effects of pH and ammonium addition. J Hazard Mater 164: 1045–1050. https://doi.org/10.1016/j.jhazmat.2008.09.006
Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125. https://doi.org/10.1016/S0304-3894(01)00224-2
Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183– 198. https://doi.org/10.1016/j.envpol.2004.06.009
Vollenbroich D, Pauli G, Ozel M, Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49
Chen M-C, Liu T-T, Wang J-P, Chen Y-P, Chen Q-X, Zhu Y-J, Liu B (2020) Strong inhibitory activities and action modes of lipopeptides on lipase. J Enzyme Inhib Med Chem. https://doi. org/10.1080/14756366.2020.1734798
Wu YS, Ngai SC, Goh BH, Chan KG, Lee LH, Chuah LH (2017) Anticancer activities of surfactin potential application of nanotechnology assisted surfactin delivery. Front Pharmacol 8:761. https://doi.org/10.3389/fphar.2017.00761
do Valle Gomes MZ, Nitschke M (2012) Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control 25:441–447. https://doi.org/10.1016/j.foodcont.2011.11.025
Mukherjee AK (2007) Potential application of cyclic lipopeptide biosurfactants produced by Bacillus subtilis strains in laundry detergent formulations. Lett Appl Microbiol 45:330–335. https://doi.org/10.1111/j.1472-765X.2007.02197.x
Taira T, Yanagisawa S, Nagano T, Tsuji T, Endo A, Imura T (2017) pH-induced conformational change of natural cyclic lipopeptide surfactin and the effect on protease activity. Colloids Surf B Biointerfaces 156:382–387. https://doi.org/10.1016/j.colsurfb.2017.05.017
Kanlayavattanakul M, Lourith N (2010) Lipopeptides in cosmetics. Int J Cosmet Sci 32:1–8. https://doi.org/10.1111/j.1468-2494.2009.00543.x
Lewińska A, Domżał-Kędzia M, Jaromin A, Łukaszewicz M (2020) Nanoemulsion stabilized by safe surfactin from Bacillus subtilis as a multifunctional, custom-designed smart delivery system. Pharmaceutics 12:1–21. https://doi.org/10.3390/pharmaceutics12100953
Yan L, Liu G, Zhao B, Pang B, Wu W, Ai C, Zhao X, Wang X, Jiang C, Shao D, Liu Q, Li M, Wang L, Shi J (2020) Novel biomedical functions of surfactin A from Bacillus subtilis in wound healing promotion and scar inhibition. J Agric Food Chem 68:6987–6997. https://doi. org/10.1021/acs.jafc.0c01658
Lu J-K,Wang H-M, Xu X-R (2016) Method for anti-aging treatment by surfactin in cosmetics via enhancing sirtuin (U.S. Patent No. US 9,364,413 B2) U. S. Patent and Trademark Office
Yoneda T, Masatsuji E, Tsuzuki T, Furuya K, Takama M, Miyota Y, Ito S (1999) Surfactant for use in external preparations for skin and external preparation for skin containing the same (No. WO 99/62482) World Intellectual Property Organization