Space and Planetary Science; Earth and Planetary Sciences (miscellaneous); Geochemistry and Petrology; Geophysics
Abstract :
[en] The upper mesosphere and lower thermosphere of Mars (70–150 km) is of high interest because it is a region affected by climatological/meteorological events in the lower atmosphere and external solar forcing. However, only a few measurements are available at this altitude range. OI 557.7 nm dayglow emission has been detected at these altitudes by the limb observations with Nadir and Occultation for Mars Discovery (NOMAD) aboard the ExoMars Trace Gas Orbiter (TGO). We develop an inversion method to retrieve
density and temperature at these altitudes from the OI 557.7 nm dayglow limb profiles. We demonstrate that the atmospheric density around 90 and 140 km and temperature around 80 km during the daytime can be retrieved from the TGO/NOMAD limb measurements. The retrieved densities show a large seasonal variation both around 90 and 140 km and reach maximum values around perihelion period. This can be explained by temperature variation in the lower atmosphere driven by the dust content and Sun-Mars distance. Temperature around 80 km is higher than predicted by general circulation models, which is tentatively consistent with the warm atmospheric layer recently discovered in nighttime. The temperature retrieval relies on the temperature dependence of the quenching coefficient of 1 S oxygen by CO2. Further validation of this coefficient in the range of the Mars upper atmosphere is needed for the verification of the retrieved high temperature.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Aoki, Shohei ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Department of Complexity Science and Engineering Graduate School of Frontier Sciences The University of Tokyo Kashiwa Japan ; Royal Belgian Institute for Space Aeronomy Brussels Belgium
Gkouvelis, Leonardos ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; NASA/Ames Research Center Moffet Field Mountain View CA USA
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Soret, Lauriane ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Hubert, Benoît ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Lopez‐Valverde, M. A. ; Instituto de Astrofisica de Andalucia‐CSIC Glorieta de la Astronomia Granada Spain
González‐Galindo, F. ; Instituto de Astrofisica de Andalucia‐CSIC Glorieta de la Astronomia Granada Spain
Sagawa, H. ; Faculty of Science Kyoto Sangyo University Kamigamo Motoyama Kyoto Japan
Thomas, I. R. ; Royal Belgian Institute for Space Aeronomy Brussels Belgium
Ristic, B. ; Royal Belgian Institute for Space Aeronomy Brussels Belgium
Willame, Y.; Royal Belgian Institute for Space Aeronomy Brussels Belgium
Depiesse, C. ; Royal Belgian Institute for Space Aeronomy Brussels Belgium
Mason, J.; School of Physical Sciences The Open University Milton Keynes UK
Patel, M. R. ; School of Physical Sciences The Open University Milton Keynes UK
Bellucci, G.; Istituto di Astrofisica e Planetologia Spaziali Roma Italy
Lopez‐Moreno, J.‐J.; Instituto de Astrofisica de Andalucia‐CSIC Glorieta de la Astronomia Granada Spain
Daerden, F. ; Royal Belgian Institute for Space Aeronomy Brussels Belgium
Vandaele, A. C.; Royal Belgian Institute for Space Aeronomy Brussels Belgium
Aoki, S., & Vandaele, A. C. (2022). Density and temperature of the upper mesosphere and lower thermosphere of Mars retrieved from the OI 557.7 nm dayglow measured by TGO/NOMAD, presented in Aoki et al. Royal Belgian Institute for Space Aeronomy. https://doi.org/10.18758/71021073
Atkinson, R., & Welge, K. H. (1972). Temperature dependence of O (1S) deactivation by CO2, O2, N2, and Ar. The Journal of Chemical Physics, 57(9), 3689–3693. https://doi.org/10.1063/1.1678829
Bougher, S. W., Brain, D. A., Fox, J. L., Gonzalez-Galindo, F., Simon-Wedlund, C., & Withers, P. G. (2017). Chapter 14: Upper neutral atmosphere and ionosphere. In B. Haberle, M. Smith, T. Clancy, F. Forget, & R. Zurek (Eds.), The atmosphere and climate of Mars. Cambridge University Press. https://doi.org/10.1017/9781107016187
Brasseur, G., & Solomon, S. (1986). Aeronomy of the middle atmosphere (2nd ed.). D. Reidel.
Capetanakis, F. P., Sondermann, F., Höser, S., & Stuhl, F. (1993). Temperature dependence of the quenching of O(1S) by simple inorganic molecules. The Journal of Chemical Physics, 98(10), 7883–7887. https://doi.org/10.1063/1.464596
Chamberlin, P. C., Woods, T. N., & Eparvier, F. G. (2007). Flare irradiance spectral model (FISM): Daily component algorithms and results. Space Weather, 5(7). https://doi.org/10.1029/2007SW000372
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104(E10), 24155–24176. https://doi.org/10.1029/1999JE001025
Forget, F., Montmessin, F., Bertaux, J. L., González-Galindo, F., Lebonnois, S., Quemerais, E., et al. (2009). Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars express SPICAM. Journal of Geophysical Research, 114(E1), E01004. https://doi.org/10.1029/2008JE003086
Gérard, J. C., Aoki, S., Gkouvelis, L., Soret, L., Willame, Y., Thomas, I. R., et al. (2021). First observation of the oxygen 630 nm emission in the Martian dayglow. Geophysical Research Letters, 48(8), e2020GL092334. https://doi.org/10.1029/2020gl092334
Gérard, J. C., Aoki, S., Ritter, B., Willame, Y., Hubert, B., Gkouvelis, L., et al. (2020). Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations. Nature Astronomy, 124(7), 5–8. https://doi.org/10.1029/2019JA026596
Gérard, J. C., Gkouvelis, L., Ritter, B., Hubert, B., Jain, S. K., & Schneider, N. M. (2019). MAVEN-IUVS observations of the CO2+ UV doublet and CO Cameron bands in the Martian thermosphere: Aeronomy, seasonal, and latitudinal distribution. Journal of Geophysical Research: Space Physics, 124(7), 5816–5827. https://doi.org/10.1029/2019ja026596
Gkouvelis, L., Gérard, J. C., González-Galindo, F., Hubert, B., & Schneider, N. M. (2020). Isobar altitude variations in the upper mesosphere observed with IUVS-MAVEN in response to martian dust storms. Geophysical Research Letters, 47(12), e2020GL087468. https://doi.org/10.1029/2020gl087468
Gkouvelis, L., Gérard, J.-C., Ritter, B., Hubert, B., Schneider, N. M., & Jain, S. K. (2018). The O(1S) 297.2-nm dayglow emission: A tracer of CO2 density variations in the martian lower thermosphere. Journal of Geophysical Research: Planets, 123(12), 3119–3132. https://doi.org/10.1029/2018JE005709
Gkouvelis, L., Gérard, J. C., Ritter, B., Hubert, B., Schneider, N. M., & Jain, S. K. (2020). Airglow remote sensing of the seasonal variation of the martian upper atmosphere: MAVEN limb observations and model comparison. Icarus, 341, 113666. https://doi.org/10.1016/j.icarus.2020.113666
Grassi, D., Ignatiev, N. I., Zasova, L. V., Maturilli, A., Formisano, V., Bianchini, G. A., & Giuranna, M. (2005). Methods for the analysis of data from the planetary Fourier Spectrometer on the Mars express mission. Planetary and Space Science, 53(10), 1017–1034. https://doi.org/10.1016/j.pss.2005.01.006
Gröller, H., Montmessin, F., Yelle, R. V., Lefèvre, F., Forget, F., Schneider, N. M., et al. (2018). MAVEN/IUVS stellar occultation measurements of Mars atmospheric structure and composition. Journal of Geophysical Research: Planets, 123(6), 1449–1483. https://doi.org/10.1029/2017JE005466
Hubert, B., Munhoven, G., Moulane, Y., Hutsemekers, D., Manfroid, J., Opitom, C., & Jehin, E. (2022). Analytic and numerical methods for the Abel transform of exponential functions for planetary and cometary atmospheres. Icarus, 371, 114654. https://doi.org/10.1016/j.icarus.2021.114654
Jain, S. K., Soto, E., Evans, J. S., Deighan, J., Schneider, N. M., & Bougher, S. W. (2021). Thermal structure of Mars middle and upper atmospheres: Understanding the impacts of dynamics and of solar forcing. Icarus. in press. https://doi.org/10.1016/j.icarus.2021.114703
Jiménez-Monferrer, S., López-Valverde, M. Á., Funke, B., González-Galindo, F., Piccialli, A., García-Comas, M., et al. (2021). CO2 retrievals in the Mars daylight thermosphere from its 4.3 μm limb emission measured by OMEGA/MEx. Icarus, 353, 113830. https://doi.org/10.1016/j.icarus.2020.113830
Keating, G. M., Bougher, S. W., Zurek, R. W., Tolson, R. H., Cancro, G. J., Noll, S. N., et al. (1998). The structure of the upper atmosphere of Mars: In situ accelerometer measurements from Mars Global Surveyor. Science, 279(5357), 1672–1676. https://doi.org/10.1126/science.279.5357.1672
López-Valverde, M. A., Gérard, J.-C., González-Galindo, F., Vandaele, A. C., Thomas, I., Korablev, O., et al. (2018). Investigations of the Mars upper atmosphere with ExoMars trace gas orbiter. Space Science Reviews, 214(1), 29. https://doi.org/10.1007/s11214-017-0463-4
Magalhães, J. A., Schofield, J. T., & Seiff, A. (1999). Results of the Mars Pathfinder atmospheric structure investigation. Journal of Geophysical Research, 104(E4), 8943–8956. https://doi.org/10.1029/1998JE900041
McDunn, T., Bougher, S. W., Murphy, J., Smith, M. D., Forget, F., Bertaux, J.-L., & Montmessin, F. (2010). Simulating the density and thermal structure of the middle atmosphere (80-130 km) of Mars using the MGCM-MTGCM: A comparison with MEX-SPICAM observations. Icarus, 206(1), 5–17. https://doi.org/10.1016/j.icarus.2009.06.034
Millour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., Montabone, L., et al. (2018). The Mars climate database (version 5.3). In Proceedings of the Mars science workshop "from Mars express to ExoMars". ESAC. Retrieved from https://www.cosmos.esa.int/web/mars-science-workshop-2018
Montmessin, F., Korablev, O., Lefèvre, F., Bertaux, J.-L., Fedorova, A., Trokhimovskiy, A., et al. (2017). SPICAM on Mars express: A 10 year in-depth survey of the martian atmosphere. Icarus, 297, 195–216. https://doi.org/10.1016/j.icarus.2017.06.022
Nakagawa, H., Jain, S. K., Schneider, N. M., Montmessin, F., Yelle, R. V., Jiang, F., et al. (2020). A warm layer in the nightside mesosphere of Mars. Geophysical Research Letters, 47(4), e85646. https://doi.org/10.1029/2019GL085646
Patel, M. R., Antoine, P., Mason, J., Leese, M., Hathi, B., Stevens, A. H., et al. (2017). NOMAD spectrometer on the ExoMars trace gas orbiter mission: Part 2—Design, manufacturing, and testing of the ultraviolet and visible channel. Applied Optics, 56(10), 2771–2782. https://doi.org/10.1364/AO.56.002771
Ritter, B., Gérard, J.-C., Gkouvelis, L., Hubert, B., Jain, S. K., & Schneider, N. M. (2019). Characteristics of Mars UV dayglow emissions from atomic oxygen at 130.4 and 135.6 nm: MAVEN/IUVS limb observations and modeling. Journal of Geophysical Research: Space Physics, 124(6), 4809–4832. https://doi.org/10.1029/2019JA026669
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding - Theory and practice. In C. D. Rodgers (Ed.), Inverse methods for atmospheric sounding - theory and practice, series: Series on atmospheric oceanic and planetary physics (Vol. 2). World Scientific Publishing Co. Pte. Ltd. (ISBN: 9789812813718). https://doi.org/10.1142/9789812813718
Seiff, A., & Kirk, D. B. (1977). Structure of the atmosphere of Mars in summer mid-latitudes. Journal of Geophysical Research, 82(28), 4364–4378. https://doi.org/10.1029/JS082i028p04364
Starichenko, E. D., Belyaev, D. A., Medvedev, A. S., Fedorova, A. A., Korablev, O. I., Trokhimovskiy, A., et al. (2021). Gravity wave activity in the Martian atmosphere at altitudes 20–160 km from ACS/TGO occultation measurements. Journal of Geophysical Research: Planets, 126(8), e2021JE006899. https://doi.org/10.1029/2021JE006899
Thiemann, E. M., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., & Jakosky, B. M. (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 122(3), 2748–2767. https://doi.org/10.1002/2016JA023512
Vandaele, A. C., Lopez-Moreno, J.-J., Patel, M. R., Bellucci, G., Daerden, F., Ristic, B., et al. (2018). NOMAD, an integrated suite of three spectrometers for the ExoMars trace gas mission: Technical description, science objectives and expected performance. Space Science Reviews, 214(5), 80. https://doi.org/10.1007/s11214-018-0517-2
Vandaele, A. C., Willame, Y., Depiesse, C., Thomas, I., Robert, S., Bolsée, D., et al. (2015). Optical and radiometric models of the NOMAD instrument part I: The UVIS channel. Optics Express, 23(23), 30028–30042. https://doi.org/10.1364/OE.23.030028
Withers, P., & Smith, M. D. (2006). Atmospheric entry profiles from the Mars exploration rovers spirit and opportunity. Icarus, 185(1), 133–142. https://doi.org/10.1016/j.icarus.2006.06.013