[en] Introduction: Half a century since the creation of the International Association of Bryologists, we carried out a review to identify outstanding challenges and future perspectives in bryology. Specifically, we have identified 50 fundamental questions that are critical in advancing the discipline. Methods: We have adapted a deep-rooted methodology of horizon scanning to identify key research foci. An initial pool of 258 questions was prepared by a multidisciplinary and international working group of 32 bryologists. A series of online surveys completed by a broader community of researchers in bryology, followed by quality-control steps implemented by the working group, were used to create a list of top-priority questions. This final list was restricted to 50 questions with a broad conceptual scope and answerable through realistic research approaches. Key results: The top list of 50 fundamental questions was organised into four general topics: Bryophyte Biodiversity and Biogeography; Bryophyte Ecology, Physiology and Reproductive Biology; Bryophyte Conservation and Management; and Bryophyte Evolution and Systematics. These topics included 9, 19, 14 and 8 questions, respectively. Conclusions: Although many of the research challenges identified are not newly conceived, our horizon-scanning exercise has established a significant foundation for future bryological research. We suggest analytical and conceptual strategies and novel developments for potential use in advancing the research agenda for bryology.
Patiño, Jairo ; Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología–Consejo Superior de Investigaciones Científicas (IPNA-CSIC), Tenerife, Spain ; Department of Botany, Ecology and Plant Physiology, University of La Laguna, Tenerife, Spain
Bisang, Irene ; Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden
Goffinet, Bernard ; Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, United States
Hedenäs, Lars ; Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden
McDaniel, Stuart ; Department of Biology, University of Florida, Gainesville, United States
Pressel, Silvia ; Life Sciences Department, The Natural History Museum, London, United Kingdom
Stech, Michael ; Naturalis Biodiversity Center, Leiden, Netherlands ; Leiden University, Leiden, Netherlands
Ah-Peng, Claudine; UMR PVBMT, Université de La Réunion, Saint-Pierre, France
Bergamini, Ariel ; WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
Caners, Richard T. ; Royal Alberta Museum, Edmonton, Canada
Christine Cargill, D. ; Australian National Herbarium, Centre for Australian National Biodiversity Research, Canberra, Australia
Cronberg, Nils ; Department of Biology, Lund University, Lund, Sweden
Duckett, Jeffrey ; Life Sciences Department, The Natural History Museum, London, United Kingdom
Eppley, Sarah ; Center for Life in Extreme Environments, Portland State University, Portland, United States
Fenton, Nicole J. ; Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Canada
Fisher, Kirsten ; Biological Sciences, California State University, Los Angeles, United States
González-Mancebo, Juana; Department of Botany, Ecology and Plant Physiology, University of La Laguna, Tenerife, Spain
Hasebe, Mitsuyasu ; National Institute for Basic Biology, Okazaki, Japan
Heinrichs, Jochen
Hylander, Kristoffer ; Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
Ignatov, Michael S. ; Tsitsin Main Botanical Garden of Russian Academy of Sciences, Moscow, Russian Federation ; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
Martínez-Abaigar, Javier ; Faculty of Science and Technology, University of La Rioja, Logroño, Spain
Medina, Nagore G. ; Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain ; Centro de Investigación en Biodiversidad y Cambio Global, Madrid, Spain
Medina, Rafael ; Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, Madrid, Spain
Quandt, Dietmar; Nees-Institut für Biodiversität der Pflanzen, Friedrich-Wilhelms-Universität, Rheinische, Germany
Rensing, Stefan A. ; University of Freiburg, Freiburg, Germany
Renzaglia, Karen; Department of Plant Biology, Southern Illinois University Carbondale, United States
Renner, Matthew; Royal Botanic Garden and Domain Trust, Sydney, Australia
Ros, Rosa M. ; Department of Plant Biology (Botany), University of Murcia, Murcia, Spain
MICINN - Ministerio de Ciencia e Innovacion FBBVA - Fundación BBVA NSF - National Science Foundation ERDF - European Regional Development Fund
Funding number :
Ramón y Cajal Program (RYC-2016-20506)
Funding text :
J. Patiño was funded by the Spanish Ministerio de Ciencia e Innovación (MICINN) through the Ramón y Cajal Program (RYC-2016-20506) and supported by the Fundación BBVA project (PR19_ECO_0046) and the MICINN project (PID2019-110538GA-I00). S. McDaniel was supported by grants from the NSF (DEB 1542609, 1541005, 1541506). J. Martínez-Abaigar was supported by the grant PGC2018-093824-B-C42, funded by MCIN/AEI/10.13039/501100011033 and by the European Regional Development Fund. B. Goffinet was supported by NSF grant DEB-1753811. The ‘50 fundamental questions in bryology’ working group is grateful to all persons who contributed their time to participate in the different rounds of voting and the proposal of questions that ultimately made this paper possible. We also thank S. Robbert Gradstein, Guido van Reenen, Jan-Peter Frahm, Gaik Ee Lee and Mereia Tabua for allowing us to reproduce his photographs. We finally thank Neil Bell and two anonymous reviewers for their constructive comments on an earlier version of the manuscript.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adams DG, Duggan PS. 2008. Cyanobacteria–bryophyte symbioses. Journal of Experimental Botany. 59 (5): 1047–1058. https://doi.org/10.1093/jxb/ern005.
Ah-Peng C, Cardoso AW, Flores O, West A, Wilding N, Strasberg D, Hedderson TAJ. 2017. The role of epiphytic bryophytes in interception, storage, and the regulated release of atmospheric moisture in a tropical montane cloud forest. Journal of Hydrology. 548: 665–673. https://doi.org/10.1016/j.jhydrol.2017.03.043.
Ah-Peng C, Flores O, Wilding N, Bardat J, Marline L, Hedderson TAJ, Strasberg D. 2014. Functional diversity of subalpine bryophyte communities in an oceanic island (La Réunion). Arctic, Antarctic, and Alpine Research. 46 (4): 841–851. https://doi.org/10.1657/1938-4246-46.4.841.
Bączkiewicz A, Szczecińska M, Sawicki J, Stebel A, Buczkowska K. 2017. DNA barcoding, ecology and geography of the cryptic species of Aneura pinguis and their relationships with Aneura maxima and Aneura mirabilis (Metzgeriales, Marchantiophyta). PLoS One. 12 (12): e0188837. https://doi.org/10.1371/journal.pone.0188837.
Bannar-Martin KH, Kremer CT, Ernest SKM, Leibold MA, Auge H, Chase J, Declerck SAJ, Eisenhauer N, Harpole S, Hillebrand H, et al. 2018. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (I) approach. Ecology Letters. 21 (2): 167–180. https://doi.org/10.1111/ele.12895.
Barbé M, Chavel ÉE, Fenton NJ, Imbeau L, Mazerolle MJ, Drapeau P, Bergeron Y. 2016a. Dispersal of bryophytes and ferns is facilitated by small mammals in the boreal forest. Ecoscience. 23 (3–4): 67–76. https://doi.org/10.1080/11956860.2016.1235917.
Barbé M, Fenton NJ, Bergeron Y. 2016b. So close and yet so far away: long-distance dispersal events govern bryophyte metacommunity reassembly. Journal of Ecology. 104 (6): 1707–1719. https://doi.org/10.1111/1365-2745.12637.
Barbé M, Fenton NJ, Caners R, Bergeron Y. 2017. Interannual variation in bryophyte dispersal: linking bryophyte phenophases and weather conditions. Botany. 95 (12): 1151–1169. https://doi.org/10.1139/cjb-2017-0054.
Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, et al. 2011. Has the Earth’s sixth mass extinction already arrived? Nature. 471: 51–57. https://doi.org/10.1038/nature09678.
Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, Nilsson M-C, Rasmussen U. 2013. Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytologist. 200 (1): 54–60. https://doi.org/10.1111/nph.12403.
Bebber DP, Carine MA, Wood JRI, Wortley AH, Harris DJ, Prance GT, Davidse G, Paige J, Pennington TD, Robson NKB, et al. 2010. Herbaria are a major frontier for species discovery. Proceedings of the National Academy of Sciences of the United States of America. 107 (51): 22169. https://doi.org/10.1073/pnas.1011841108.
Bechteler J, Schäfer-Verwimp A, Lee GE, Feldberg K, Pérez-Escobar OA, Pócs T, Peralta DF, Renner MAM, Heinrichs J. 2017. Geographical structure, narrow species ranges, and Cenozoic diversification in a pantropical clade of epiphyllous leafy liverworts. Ecology and Evolution. 7 (2): 638–653. https://doi.org/10.1002/ece3.2656.
Beike AK, von Stackelberg M, Schallenberg-Rüdinger M, Hanke ST, Follo M, Quandt D, McDaniel SF, Reski R, Tan BC, Rensing SA. 2014. Molecular evidence for convergent evolution and allopolyploid speciation within the Physcomitrium–Physcomitrella species complex. BMC Evolutionary Biology. 14 (1): 158. https://doi.org/10.1186/1471-2148-14-158.
Bengtsson F, Granath G, Rydin H. 2016. Photosynthesis, growth, and decay traits in Sphagnum–a multispecies comparison. Ecology and Evolution. 6 (10): 3325–3341. https://doi.org/10.1002/ece3.2119.
Bengtsson F, Rydin H, Baltzer JL, Bragazza L, Bu Z-J, Caporn SJM, Dorrepaal E, Flatberg KI, Galanina O, Gałka M, et al. 2021. Environmental drivers of Sphagnum growth in peatlands across the Holarctic region. Journal of Ecology. 109 (1): 417–431. https://doi.org/10.1111/1365-2745.13499.
Berdugo MB, Dovciak M. 2019. Bryophytes in fir waves: forest canopy indicator species and functional diversity decline in canopy gaps. Journal of Vegetation Science. 30 (2): 235–246. https://doi.org/10.1111/jvs.12718.
Berg A, Danielsson Å, Svensson BH. 2013. Transfer of fixed-N from N2-fixing cyanobacteria associated with the moss Sphagnum riparium results in enhanced growth of the moss. Plant and Soil. 362 (1): 271–278. https://doi.org/10.1007/s11104-012-1278-4.
Bergamini A, Bisang I, Hodgetts N, Lockhart N, van Rooy J, Hallingbäck T. 2019. Recommendations for the use of critical terms when applying IUCN red-listing criteria to bryophytes. Lindbergia. 2019 (1): 1–6. https://doi.org/10.25227/linbg.01117.
Bergamini A, Ungricht S, Hofmann H. 2009. An elevational shift of cryophilous bryophytes in the last century–an effect of climate warming? Diversity and Distributions. 15 (5): 871–879. https://doi.org/10.1111/j.1472-4642.2009.00595.x.
Bernhardt-Römermann M, Poschlod P, Hentschel J. 2018. BryForTrait–a life-history trait database of forest bryophytes. Journal of Vegetation Science. 29 (4): 798–800. https://doi.org/10.1111/jvs.12646.
Bisang I, Bergamini A, Lienhard L. 2009. Environmental-friendly farming in Switzerland is not hornwort-friendly. Biological Conservation. 142 (10): 2104–2113. https://doi.org/10.1016/j.biocon.2009.04.006.
Bisang I, Ehrlén J. 2002. Reproductive effort and cost of sexual reproduction in female Dicranum polysetum. The Bryologist. 105: 384–397.
Bisang I, Ehrlén J, Persson C, Hedenäs L. 2014. Family affiliation, sex ratio and sporophyte frequency in unisexual mosses. Botanical Journal of the Linnean Society. 174 (2): 163–172. https://doi.org/10.1111/boj.12135.
Bisang I, Lienhard L, Bergamini A. 2021. Three decades of field surveys reveal a decline of arable bryophytes in the Swiss lowlands despite agri-environment schemes. Agriculture, Ecosystems and Environment. 313: 107325. https://doi.org/10.1016/j.agee.2021.107325.
Blanchet FG, Cazelles K, Gravel D. 2020. Co-occurrence is not evidence of ecological interactions. Ecology Letters. 23 (7): 1050–1063. https://doi.org/10.1111/ele.13525.
Boch S, Berlinger M, Fischer M, Knop E, Nentwig W, Türke M, Prati D. 2013. Fern and bryophyte endozoochory by slugs. Oecologia. 172 (3): 817–822. https://doi.org/10.1007/s00442-012-2536-0.
Boch S, Fischer M, Knop E, Allan E. 2015. Endozoochory by slugs can increase bryophyte establishment and species richness. Oikos. 124 (3): 331–336. https://doi.org/10.1111/oik.01536.
Boch S, Martins A, Ruas S, Fontinha S, Carvalho P, Reis F, Bergamini A, Sim-Sim M. 2019. Bryophyte and macrolichen diversity show contrasting elevation relationships and are negatively affected by disturbances in laurel forests of Madeira Island. Journal of Vegetation Science. 30 (6): 1122–1133. https://doi.org/10.1111/jvs.12802.
Bonfim Santos M, Fedosov V, Hartman T, Fedorova A, Siebel H, Stech M. 2021. Phylogenetic inferences reveal deep polyphyly of Aongstroemiaceae and Dicranellaceae within the haplolepideous mosses (Dicranidae, Bryophyta). Taxon. 70 (2): 246–262. https://doi.org/10.1002/tax.12439.
Borges PAV, Cardoso P, Kreft H, Whittaker RJ, Fattorini S, Emerson BC, Gil A, Gillespie RG, Matthews TJ, Santos AMC, et al. 2018. Global Island Monitoring Scheme (GIMS): a proposal for the long-term coordinated survey and monitoring of native island forest biota. Biodiversity and Conservation. 27: 2567–2586. https://doi.org/10.1007/s10531-018-1553-7.
Bowles AMC, Bechtold U, Paps J. 2020. The origin of land plants is rooted in two bursts of genomic novelty. Current Biology. 30 (3): 530–536. https://doi.org/10.1016/j.cub.2019.11.090.
Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell. 171 (2): 287–304. https://doi.org/10.1016/j.cell.2017.09.030.
Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. 2012. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. The International Society for Microbial Ecology Journal. 6 (4): 802–813. https://doi.org/10.1038/ismej.2011.151.
Bragina A, Oberauner-Wappis L, Zachow C, Halwachs B, Thallinger GG, Müller H, Berg G. 2014. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions. Molecular Ecology. 23 (18): 4498–4510. https://doi.org/10.1111/mec.12885.
Brodribb TJ, Carriquí M, Delzon S, McAdam SAM, Holbrook NM. 2020. Advanced vascular function discovered in a widespread moss. Nature Plants. 6 (3): 273–279. https://doi.org/10.1038/s41477-020-0602-x.
Bu Z-J, Sundberg S, Feng L, Li H-K, Zhao H-Y, Li H-C. 2017. The Methuselah of plant diaspores: Sphagnum spores can survive in nature for centuries. New Phytologist. 214 (4): 1398–1402. https://doi.org/10.1111/nph.14575.
Bu Z-J, Zheng X-X, Rydin H, Moore T, Ma J. 2013. Facilitation vs. competition: does interspecific interaction affect drought responses in Sphagnum? Basic and Applied Ecology. 14 (7): 574–584. https://doi.org/10.1016/j.baae.2013.08.002.
Buchbender V, Hespanhol H, Krug M, Sérgio C, Séneca A, Maul K, Hedenäs L, Quandt D. 2014. Phylogenetic reconstructions of the Hedwigiaceae reveal cryptic speciation and hybridisation in Hedwigia. Bryophyte Diversity and Evolution. 36 (1): 1–21.
Budke JM, Bernard EC, Gray DJ, Huttunen S, Piechulla B, Trigiano RN. 2018. Introduction to the special issue on bryophytes. Critical Reviews in Plant Sciences. 37 (2–3): 102–112. https://doi.org/10.1080/07352689.2018.1482396.
Budke JM, Goffinet B, Jones CS. 2013. Dehydration protection provided by a maternal cuticle improves offspring fitness in the moss Funaria hygrometrica. Annals of Botany. 111 (5): 781–789. https://doi.org/10.1093/aob/mct033.
Buzorius G, Rannik Ü, Nilsson D, Kulmala M. 2001. Vertical fluxes and micrometeorology during aerosol particle formation events. Tellus B: Chemical and Physical Meteorology. 53 (4): 394–405. https://doi.org/10.3402/tellusb.v53i4.16612.
Calleja JA, Vigalondo B, Mazimpaka V, Draper I, Garilleti R, Lara F. 2020. Earliest herbarium evidence for the occurrence of Lewinskya acuminata (Orthotrichaceae) in East Africa. Journal of Bryology. 42 (2): 186–188. https://doi.org/10.1080/03736687.2019.1655871.
Câmara PEAS, Carvalho-Silva M, Stech M. 2021. Antarctic bryophyte research–current state and future directions. Bryophyte Diversity and Evolution. 43: 221–233.
Caners RT, Ellen Macdonald S, Belland RJ. 2009. Recolonization potential of bryophyte diaspore banks in harvested boreal mixed-wood forest. Plant Ecology. 204 (1): 55–68. https://doi.org/10.1007/s11258-008-9565-0.
Cannone N, Corinti T, Malfasi F, Gerola P, Vianelli A, Vanetti I, Zaccara S, Convey P, Guglielmin M. 2017. Moss survival through in situ cryptobiosis after six centuries of glacier burial. Scientific Reports. 7 (1): 4438. https://doi.org/10.1038/s41598-017-04848-6.
Carey SB, Jenkins J, Lovell JT, Maumus F, Sreedasyam A, Payton AC, Shu S, Tiley GP, Fernandez-Pozo N, Healey A, et al. 2021. Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. Science Advances. 7 (27): eabh2488. https://doi.org/10.1126/sciadv.abh2488.
Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Jawdy S, Grimwood J, Schmutz J, Hanson PJ, Shaw AJ, et al. 2020. Sphagnum peat moss thermotolerance is modulated by the microbiome. bioRxiv 2020.2008.2021.259184. https://doi.org/10.1101/2020.08.21.259184.
Carwardine J, Martin TG, Firn J, Reyes RP, Nicol S, Reeson A, Grantham HS, Stratford D, Kehoe L, Chadès I. 2019. Priority threat management for biodiversity conservation: a handbook. Journal of Applied Ecology. 56 (2): 481–490. https://doi.org/10.1111/1365-2664.13268.
Ceballos G, Ehrlich PR, Dirzo R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences of the United States of America. 114 (30): E6089. https://doi.org/10.1073/pnas.1704949114.
Chmielewski MW, Eppley SM. 2019. Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proceedings of the Royal Society B: Biological Sciences. 286 (1897): 20182253. https://doi.org/10.1098/rspb.2018.2253.
Collart F, Hedenäs L, Broennimann O, Guisan A, Vanderpoorten A. 2021a. Intraspecific differentiation: implications for niche and distribution modelling. Journal of Biogeography. 48 (2): 415–426. https://doi.org/10.1111/jbi.14009.
Collart F, Wang J, Patiño J, Hagborg A, Söderström L, Goffinet B, Magain N, Hardy OJ, Vanderpoorten A. 2021b. Macroclimatic structuring of spatial phylogenetic turnover in liverworts. Ecography. 44 (10): 1474–1485. https://doi.org/10.1111/ecog.05659.
Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ. 2007. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Annals of Botany. 99 (5): 987–1001. https://doi.org/10.1093/aob/mcm030.
Cornwell WK, Pearse WD, Dalrymple RL, Zanne AE. 2019. What we don’t know about global plant diversity. Ecography. 42 (11): 1819–1831. https://doi.org/10.1111/ecog.04481.
Coudert Y, Bell NE, Edelin C, Harrison CJ. 2017. Multiple innovations underpinned branching form diversification in mosses. New Phytologist. 215 (2): 840–850. https://doi.org/10.1111/nph.14553.
Coxson DS, McIntyre DD, Vogel HJ. 1992. Pulse release of sugars and polyols from canopy bryophytes in tropical montane rain forest (Guadeloupe, French West Indies). Biotropica. 24 (2): 121–133. https://doi.org/10.2307/2388665.
Crawford M, Jesson LK, Garnock-Jones PJ. 2009. Correlated evolution of sexual system and life-history traits in mosses. Evolution. 63 (5): 1129–1142. https://doi.org/10.1111/j.1558-5646.2009.00615.x.
Crespi B, Nosil P. 2013. Conflictual speciation: species formation via genomic conflict. Trends in Ecology and Evolution. 28 (1): 48–57. https://doi.org/10.1016/j.tree.2012.08.015.
Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, Weston PH, Westoby M, Wilf P, Linder HP. 2009. Phylogenetic biome conservatism on a global scale? Nature. 458: 754–756.
Cronberg N. 2002. Colonization dynamics of the clonal moss Hylocomium splendens on islands in a Baltic land uplift area: reproduction, genet distribution and genetic variation. Journal of Ecology. 90: 925–935. https://doi.org/10.1046/j.1365-2745.2002.00723.x.
Cronberg N. 2012. Animal-mediated fertilization in bryophytes–parallel or precursor to insect pollination in angiosperms? Lindbergia. 35: 76–85.
Cronberg N, Natcheva R, Hedlund K. 2006. Microarthropods mediate sperm transfer in mosses. Science. 313 (5791): 1255–1255. https://doi.org/10.1126/science.1128707.
Crum H. 1972. The geographic origins of the mosses of North America’s eastern deciduous forest. Journal of the Hattori Botanical Laboratory. 35: 269–298.
Cusack DF, Silver W, McDowell WH. 2009. Biological nitrogen fixation in two tropical forests: ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems. 12 (8): 1299–1315. https://doi.org/10.1007/s10021-009-9290-0.
Davey ML, Currah RS. 2006. Interactions between mosses (Bryophyta) and fungi. Canadian Journal of Botany. 84 (10): 1509–1519. https://doi.org/10.1139/b06-120.
Deane-Coe KK. 2015. Cyanobacteria associations in temperate forest bryophytes revealed by δ15N analysis. The Journal of the Torrey Botanical Society. 143 (1): 50–57. https://doi.org/10.3159/TORREY-D-15-00013.
de Sousa F, Foster PG, Donoghue PCJ, Schneider H, Cox CJ. 2019. Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.). New Phytologist. 222 (1): 565–575. https://doi.org/10.1111/nph.15587.
DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson M-C. 2007. Ecosystem controls on nitrogen fixation in boreal feather moss communities. Oecologia. 152 (1): 121–130. https://doi.org/10.1007/s00442-006-0626-6.
DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C. 2008. Ecosystem feedbacks and nitrogen fixation in boreal forests. Science. 320 (5880): 1181. https://doi.org/10.1126/science.1154836.
DeLuca TH, Zackrisson O, Nilsson M-C, Sellstedt A. 2002. Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature. 419 (6910): 917–920. https://doi.org/10.1038/nature01051.
Désamoré A, Laenen B, Stech M, Papp B, Hedenäs L, Mateo RG, Vanderpoorten A. 2012. How do temperate bryophytes face the challenge of a changing environment? Lessons from the past and predictions for the future. Global Change Biology. 18 (9): 2915–2924. https://doi.org/10.1111/j.1365-2486.2012.02752.x.
Devos N, Szövényi P, Weston DJ, Rothfels CJ, Johnson MG, Shaw AJ. 2016. Analyses of transcriptome sequences reveal multiple ancient large-scale duplication events in the ancestor of Sphagnopsida (Bryophyta). New Phytologist. 211 (1): 300–318. https://doi.org/10.1111/nph.13887.
Di Marco M, Ferrier S, Harwood TD, Hoskins AJ, Watson JEM. 2019. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature. 573 (7775): 582–585. https://doi.org/10.1038/s41586-019-1567-7.
Dierssen K. 2001. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophytorum Bibliotheca. 56: 1–289. https://doi.org/10.1639/0007-2745(2002)105[0503:]2.0.CO;2.
Donoghue PCJ, Harrison CJ, Paps J, Schneider H. 2021. The evolutionary emergence of land plants. Current Biology. 31 (19): R1281–R1298.
Duckett JG, Pressel S. 2019. The epiphyte flora of roadside trees in the London conurbation with a North American perspective on its possible future. Field Bryology. 122: 35–51.
During HJ. 2007. Relations between clonal growth, reproduction and breeding system in the bryophytes of Belgium and The Netherlands. Nova Hedwigia. 131: 133–145.
Edwards D, Morris JL, Axe L, Duckett JG, Pressel S, Kenrick P. 2022a. Piecing together the eophytes–a new group of ancient plants containing cryptospores. New Phytologist. 233 (3): 1440–1455. https://doi.org/10.1111/nph.17703.
Edwards D, Morris JL, Axe L, Duckett JG. 2022c. Picking up the pieces: new charcoalified plant mesofossils (eophytes) from a Lower Devonian Lagerstätte in the Welsh Borderland, UK. Review of Palaeobotany and Palynology. 297: 104567. https://doi.org/10.1016/j.revpalbo.2021.104567.
Edwards D, Morris JL, Axe L, Taylor WA, Duckett JG, Kenrick P, Pressel S. 2022b. Earliest record of transfer cells in Lower Devonian plants. New Phytologist. 233 (3): 1456–1465. https://doi.org/10.1111/nph.17704.
Estébanez B, Medina NG, Caparrós R, Monforte L, Del-Castillo-Alonso M-Á, Martínez-Abaigar J, Núñez-Olivera E. 2018. Spores potentially dispersed to longer distances are more tolerant to ultraviolet radiation: a case study in the moss genus Orthotrichum. American Journal of Botany. 105 (6): 996–1008. https://doi.org/10.1002/ajb2.1118.
Fabón G, Monforte L, Tomás R, Núñez-Olivera E, Martínez-Abaigar J. 2011. Ultraviolet radiation-induced DNA damage in bryophytes: what is already known and new results on rapid repair in a liverwort in an artificial diel cycle. Boletín de la Sociedad Española de Briología. 37: 39–52.
Fedosov VE, Fedorova AV, Fedosov AE, Ignatov MS. 2016. Phylogenetic inference and peristome evolution in haplolepideous mosses, focusing on Pseudoditrichaceae and Ditrichaceae s. l. Botanical Journal of the Linnean Society. 181 (2): 139–155. https://doi.org/10.1111/boj.12408.
Feldberg K, Gradstein SR, Gröhn C, Heinrichs J, von Konrat M, Mamontov Y, Renner MAM, Roth M, Schäfer-Verwimp A, Sukkharak P, Schmidt AR. 2021. Checklist of fossil liverworts suitable for calibrating phylogenetic reconstructions. Bryophyte Diversity and Evolution. 36: 14–71.
Feldberg K, Heinrichs J, Schmidt AR, Váňa J, Schneider H. 2013. Exploring the impact of fossil constraints on the divergence time estimates of derived liverworts. Plant Systematics and Evolution. 299 (3): 585–601. https://doi.org/10.1007/s00606-012-0745-y.
Feldberg K, Schneider H, Stadler T, Schäfer-Verwimp A, Schmidt AR, Heinrichs J. 2014. Epiphytic leafy liverworts diversified in angiosperm-dominated forests. Scientific Reports. 4: 5974. https://doi.org/10.1038/srep05974.
Fenton N, Hylander K, Pharo E. 2015. Bryophytes in forest ecosystems. In: Peh KS-H, Corlett RT, Bergeron Y, editors. Handbook in forest ecology. London: Routledge; p. 239–249.
Ferreira MT, Cardoso P, Borges PAV, Gabriel R, de Azevedo EB, Reis F, Araújo MB, Elias RB. 2016. Effects of climate change on the distribution of indigenous species in oceanic islands (Azores). Climatic Change. 138 (3): 603–615. https://doi.org/10.1007/s10584-016-1754-6.
Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S. 2015. First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytologist. 205 (2): 743–756. https://doi.org/10.1111/nph.13024.
Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S. 2016. Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. The International Society for Microbial Ecology Journal. 10 (6): 1514–1526. https://doi.org/10.1038/ismej.2015.204.
Frahm J-P. 1999. A type catalogue of Campylopodioideae and Paraleucobryoideae (Musci, Dicranaceae), Part II, Campylopus. Tropical Bryology. 16 (1): 17–102. https://doi.org/10.11646/bde.16.1.6.
Frangedakis E, Shimamura M, Villarreal JC, Li F-W, Tomaselli M, Waller M, Sakakibara K, Renzaglia KS, Szövényi P. 2021. The hornworts: morphology, evolution and development. New Phytologist. 229 (2): 735–754. https://doi.org/10.1111/nph.16874.
Fritsch R. 1991. Index to bryophyte chromosome counts. Bryophytorum Bibliotheca. 40: 1–352.
Fuselier L, Davison PG, Clements M, Shaw B, Devos N, Heinrichs J, Hentschel J, Sabovljevic M, Szövényi P, Schuette S, et al. 2009. Phylogeographic analyses reveal distinct lineages of the liverworts Metzgeria furcata (L.) Dumort. and Metzgeria conjugata Lindb. (Metzgeriaceae) in Europe and North America. Biological Journal of the Linnean Society. 98 (4): 745–756. https://doi.org/10.1111/j.1095-8312.2009.01319.x.
Garbary DJ, Renzaglia KS, Duckett JG. 1993. The phylogeny of land plants: a cladistic analysis based on male gametogenesis. Plant Systematics and Evolution. 188 (3): 237–269. https://doi.org/10.1007/BF00937730.
Gauthier J, Pajkovic M, Neuenschwander S, Kaila L, Schmid S, Orlando L, Alvarez N. 2020. Museomics identifies genetic erosion in two butterfly species across the 20th century in Finland. Molecular Ecology Resources. 20 (5): 1191–1205. https://doi.org/10.1111/1755-0998.13167.
Geffert JL, Frahm J-P, Barthlott W, Mutke J. 2013. Global moss diversity: spatial and taxonomic patterns of species richness. Journal of Bryology. 35 (1): 1–11. https://doi.org/10.1179/1743282012Y.0000000038.
González-Mancebo JM, Dirkse GM, Patiño J, Romaguera F, Werner O, Ros RM, Martín JL. 2012. Applying the IUCN Red List criteria to small-sized plants on oceanic islands: conservation implications for threatened bryophytes in the Canary Islands. Biodiversity and Conservation. 21 (14): 3613–3636.
Graham CH, Fine PVA. 2008. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters. 11 (12): 1265–1277. https://doi.org/10.1111/j.1461-0248.2008.01256.x.
Gray A. 2019. The ecology of plant extinction: rates, traits and island comparisons. Oryx. 53 (3): 424–428. https://doi.org/10.1017/S0030605318000315.
Greiser C, Ehrlén J, Meineri E, Hylander K. 2020. Hiding from the climate: characterizing microrefugia for boreal forest understory species. Global Change Biology. 26: 471–483. https://doi.org/10.1111/gcb.14874.
Grenyer R, Orme CDL, Jackson SF, Thomas GH, Davies RG, Davies TJ, Jones KE, Olson VA, Ridgely RS, Rasmussen PC, et al. 2006. Global distribution and conservation of rare and threatened vertebrates. Nature. 444 (7115): 93–96. https://doi.org/10.1038/nature05237.
Gu N, Tamada Y, Imai A, Palfalvi G, Kabeya Y, Shigenobu S, Ishikawa M, Angelis KJ, Chen C, Hasebe M. 2020. DNA damage triggers reprogramming of differentiated cells into stem cells in Physcomitrella. Nature Plants. 6 (9): 1098–1105. https://doi.org/10.1038/s41477-020-0745-9.
Gunnarsson U, Granberg G, Nilsson M. 2004. Growth, production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire. New Phytologist. 163 (2): 349–359. https://doi.org/10.1111/j.1469-8137.2004.01108.x.
Habel JC, Schmitt T. 2018. Vanishing of the common species: empty habitats and the role of genetic diversity. Biological Conservation. 218: 211–216. https://doi.org/10.1016/j.biocon.2017.12.018.
Hájek T. 2020. Interlinking moss functional traits. A commentary on: ‘Mechanisms behind species-specific water economy responses to water level drawdown in peat mosses’. Annals of Botany. 126 (2): iv–v. https://doi.org/10.1093/aob/mcaa108.
Hallingback T, Tan BC. 2014. Past and present activities and future strategy of bryophyte conservation. Phytotaxa. 9 (1): 266–274.
Hanusch M, Ortiz EM, Patiño J, Schaefer H. 2020. Biogeography and integrative taxonomy of Epipterygium (Mniaceae, Bryophyta). Taxon. 69 (6): 1150–1171.
Harris BJ, Harrison CJ, Hetherington AM, Williams TA. 2020. Phylogenomic evidence for the monophyly of bryophytes and the reductive evolution of stomata. Current Biology. 30 (11): 2001–2012.
Harvey MG, Singhal S, Rabosky DL. 2019. Beyond reproductive isolation: demographic controls on the speciation process. Annual Review of Ecology, Evolution, and Systematics. 50 (1): 75–95. https://doi.org/10.1146/annurev-ecolsys-110218-024701.
He X, He KS, Hyvönen J. 2016. Will bryophytes survive in a warming world? Perspectives in Plant Ecology, Evolution and Systematics. 19: 49–60. https://doi.org/10.1016/j.ppees.2016.02.005.
Hedenäs L. 2001. Environmental factors potentially affecting character states in pleurocarpous mosses. The Bryologist. 104: 72–91.
Hedenäs L. 2008. Molecular variation and speciation in Antitrichia curtipendula s.l. (Leucodontaceae, Bryophyta). Botanical Journal of the Linnean Society. 156 (3): 341–354. https://doi.org/10.1111/j.1095-8339.2007.00775.x.
Hedenäs L. 2015. Rhytidium rugosum (Bryophyta) colonized Scandinavia from at least two glacial refugial source populations. Botanical Journal of the Linnean Society. 179 (4): 635–657. https://doi.org/10.1111/boj.12341.
Hedenäs L. 2019. On the frequency of northern and mountain genetic variants of widespread species: essential biodiversity information in a warmer world. Botanical Journal of the Linnean Society. 191 (4): 440–474. https://doi.org/10.1093/botlinnean/boz061.
Hedenäs L. 2020. Cryptic speciation revealed in Scandinavian Racomitrium lanuginosum (Hedw.) Brid. (Grimmiaceae). Journal of Bryology. 42 (2): 117–127. https://doi.org/10.1080/03736687.2020.1722923.
Hedenäs L, Bisang I. 2019. Episodic but ample sporophyte production in the moss Drepanocladus turgescens (Bryophyta: Amblystegiaceae) in SE Sweden. Acta Musei Silesiae, Scientiae Naturales. 68 (1–2): 83–93. https://doi.org/10.2478/cszma-2019-0009.
Hedenäs L, Bisang I, Korpelainen H, Cronholm B. 2010. The true sex ratio in European Pseudocalliergon trifarium (Bryophyta: Amblystegiaceae) revealed by a novel molecular approach. Biological Journal of the Linnean Society. 100 (1): 132–140. https://doi.org/10.1111/j.1095-8312.2010.01408.x.
Hedenäs L, Bisang I, Tehler A, Hamnede M, Jaederfelt K, Odelvik G. 2002. A herbarium-based method for estimates of temporal frequency changes: mosses in Sweden. Biological Conservation. 105 (3): 321–331. https://doi.org/10.1016/S0006-3207(01)00212-9.
Hedenäs L, Eldenäs P. 2007. Cryptic speciation, habitat differentiation, and geography in Hamatocaulis vernicosus (Calliergonaceae, Bryophyta). Plant Systematics and Evolution. 268: 131. https://doi.org/10.1007/s00606-007-0529-y.
Hedenäs L, Larsson P, Cronholm B, Bisang I. 2021. Evidence of horizontal gene transfer between land plant plastids has surprising conservation implications. Annals of Botany. 127 (7): 903–908. https://doi.org/10.1093/aob/mcab021.
Heinrichs J, Hentschel J, Bombosch A, Fiebig A, Reise J, Edelmann M, Kreier H-P, Schäfer-Verwimp A, Caspari S, Schmidt AR, et al. 2010. One species or at least eight? Delimitation and distribution of Frullania tamarisci (L.) Dumort. s. l. (Jungermanniopsida, Porellales) inferred from nuclear and chloroplast DNA markers. Molecular Phylogenetics and Evolution. 56 (3): 1105–1114. https://doi.org/10.1016/j.ympev.2010.05.004.
Henriques DSG, Rigal F, Borges PAV, Ah-Peng C, Gabriel R. 2017a. Functional diversity and composition of bryophyte water-related traits in Azorean native vegetation. Plant Ecology and Diversity. 10 (2–3): 127–137. https://doi.org/10.1080/17550874.2017.1315839.
Henriques DSG, Ah-Peng C, Gabriel R. 2017b. Structure and applications of BRYOTRAIT-AZO, a trait database for Azorean bryophytes. Cryptogamie, Bryologie. 38 (2): 137–152. https://doi.org/10.7872/cryb/v38.iss2.2017.137.
Hernández-Hernández R, Borges PAV, Gabriel R, Rigal F, Ah-Peng C, González-Mancebo JM. 2017. Scaling α- and β-diversity: bryophytes along an elevational gradient on a subtropical oceanic island (La Palma, Canary Islands). Journal of Vegetation Science. 28 (6): 1209–1219. https://doi.org/10.1111/jvs.12573.
Hill MO, Preston CD, Bosanquet SDS, Roy DB. 2007. BRYOATT: attributes of British and Irish mosses, liverworts and hornworts. Huntingdon, UK: Centre for Ecology and Hydrology.
HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM. 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics. 43 (1): 227–248. https://doi.org/10.1146/annurev-ecolsys-110411-160411.
Hock Z, Szövényi P, Schneller JJ, Urmi E, Tóth Z. 2008. Are sexual or asexual events determining the genetic structure of populations in the liverwort Mannia fragrans? Journal of Bryology. 30 (1): 66–73. https://doi.org/10.1179/174328208X282120.
Hodgetts N, Cálix M, Englefield E, Fettes N, García Criado M, Patin L, Nieto A, Bergamini A, Bisang I, Baisheva E, et al. 2019. A miniature world in decline: European Red List of mosses, liverworts and hornworts. Brussels: International Union for Conservation of Nature.
Hofmann H, Urmi E, Bisang I, Müller N, Küchler M, Schnyder N, Schubiger C. 2007. Retrospective assessment of frequency changes in Swiss bryophytes over the last two centuries. Lindbergia. 32 (1): 18–32.
Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, Fierer N. 2018. Novel bacterial lineages associated with boreal moss species. Environmental Microbiology. 20 (7): 2625–2638. https://doi.org/10.1111/1462-2920.14288.
Holland-Moritz H, Stuart JEM, Lewis LR, Miller SN, Mack MC, Ponciano JM, McDaniel SF, Fierer N. 2021. The bacterial communities of Alaskan mosses and their contributions to N2-fixation. Microbiome. 9 (1): 53. https://doi.org/10.1186/s40168-021-01001-4.
Horwath AB, Royles J, Tito R, Gudiño JA, Salazar Allen N, Farfan-Rios W, Rapp JM, Silman MR, Malhi Y, Swamy V, et al. 2019. Bryophyte stable isotope composition, diversity and biomass define tropical montane cloud forest extent. Proceedings of the Royal Society B: Biological Sciences. 286 (1895): 20182284. https://doi.org/10.1098/rspb.2018.2284.
Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ. 2010. Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nature Communications. 1 (1): 103. https://doi.org/10.1038/ncomms1105.
Hylander K, Weibull, H. 2012. Do time-lagged extinctions and colonizations change the interpretation of buffer strip effectiveness?–a study of riparian bryophytes in the first decade after logging. Journal of Applied Ecology. 49 (6): 1316–1324. https://doi.org/10.1111/j.1365-2664.2012.02218.x.
Ignatov MS, Maslova EV. 2021. Fossil mosses: what do they tell us about moss evolution? Bryophyte Diversity and Evolution. 36: 72–97.
Ingerpuu N, Kupper T, Vellak K, Kupper P, Sõber J, Tullus A, Zobel M, Liira J. 2019. Response of bryophytes to afforestation, increase of air humidity, and enrichment of soil diaspore bank. Forest Ecology and Management. 432: 64–72. https://doi.org/10.1016/j.foreco.2018.09.004.
Ingerpuu N, Vellak K. 2017. Methods for monitoring threatened bryophytes. Biodiversity and Conservation. 26 (14): 3275–3287. https://doi.org/10.1007/s10531-017-1405-x.
Ingerpuu N, Vellak K, Ehrlich L. 2018. Revised Red Data List of Estonian bryophytes. Folia Cryptogamica Estonica. 55 (0): 97–104. https://doi.org/10.12697/fce.2018.55.10.
Ingimundardóttir GV, Weibull H, Cronberg N. 2014. Bryophyte colonization history of the virgin volcanic island Surtsey, Iceland. Biogeosciences. 11 (16): 4415–4427. https://doi.org/10.5194/bg-11-4415-2014.
Ininbergs K, Bay G, Rasmussen U, Wardle DA, Nilsson M-C. 2011. Composition and diversity of nifH genes of nitrogen-fixing cyanobacteria associated with boreal forest feather mosses. New Phytologist. 192 (2): 507–517. https://doi.org/10.1111/j.1469-8137.2011.03809.x.
Ishikawa M, Hasebe M. 2015. Cell cycle reentry from the late S phase: implications from stem cell formation in the moss Physcomitrella patens. Journal of Plant Research. 128 (3): 399–405. https://doi.org/10.1007/s10265-015-0713-z.
Iskandar EAP, Stech M, Mota de Oliveira S. 2020. The two faces of Mt Gede, Java–species richness, composition and zonation of epiphytic bryophytes. Cryptogamie, Bryologie. 41 (6): 69–81. https://doi.org/10.5252/cryptogamiebryologie2020v41a6.
Kamisugi Y, Whitaker JW, Cuming AC. 2016. The transcriptional response to DNA-double-strand breaks in Physcomitrella patens. PLoS One. 11 (8): e0161204. https://doi.org/10.1371/journal.pone.0161204.
Renzaglia KS, Schuette S, Duff RJ, Ligrone R, Shaw AJ, Mishler BD, Duckett JG. 2007. Bryophyte phylogeny: advancing the molecular and morphological frontiers. The Bryologist. 110 (2): 179–213. https://doi.org/10.1639/0007-2745(2007)110[179:BPATMA]2.0.CO;2
Karger DN, Kessler M, Lehnert M, Jetz W. 2021. Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nature Ecology and Evolution. 5 (6): 854–862. https://doi.org/10.1038/s41559-021-01450-y.
Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W. 2009. A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences of the United States of America. 106 (23): 9322–9327. https://doi.org/10.1073/pnas.0810306106.
Kimmerer RW. 1991. Reproductive ecology of Tetraphis pellucida. I. Population density and reproductive mode. The Bryologist. 94 (3): 255–260. https://doi.org/10.2307/3243962.
Kobayashi Y, Odahara M, Sekine Y, Hamaji T, Fujiwara S, Nishimura Y, Miyagishima S-y. 2020. Holliday junction resolvase MOC1 maintains plastid and mitochondrial genome integrity in algae and bryophytes. Plant Physiology. 184 (4): 1870. https://doi.org/10.1104/pp.20.00763.
König C, Wüest RO, Graham CH, Karger DN, Sattler T, Zimmermann NE, Zurell D. 2021. Scale dependency of joint species distribution models challenges interpretation of biotic interactions. Journal of Biogeography. 48 (7): 1541–1551. https://doi.org/10.1111/jbi.14106.
Korpelainen H, von Cräutlein M, Kostamo K, Virtanen V. 2013. Spatial genetic structure of aquatic bryophytes in a connected lake system. Plant Biology. 15 (3): 514–521. https://doi.org/10.1111/j.1438-8677.2012.00660.x.
Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR. 2016. The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytologist. 211 (1): 57–64. https://doi.org/10.1111/nph.13993.
Kotiaho JS, Kaitala V, Komonen A, Päivinen J. 2005. Predicting the risk of extinction from shared ecological characteristics. Proceedings of the National Academy of Sciences of the United States of America. 102 (6): 1963. https://doi.org/10.1073/pnas.0406718102.
Kowal J, Pressel S, Duckett JG, Bidartondo MI, Field KJ. 2018. From rhizoids to roots? Experimental evidence of mutualism between liverworts and ascomycete fungi. Annals of Botany. 121 (2): 221–227. https://doi.org/10.1093/aob/mcx126.
La Farge C, Williams KH, England JH. 2013. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proceedings of the National Academy of Sciences of the United States of America. 110 (24): 9839–9844. https://doi.org/10.1073/pnas.1304199110.
Laenen B, Machac A, Gradstein SR, Shaw B, Patiño J, Désamoré A, Goffinet B, Cox CJ, Shaw AJ, Vanderpoorten A. 2016a. Increased diversification rates follow shifts to bisexuality in liverworts. New Phytologist. 210 (3): 1121–1129. https://doi.org/10.1111/nph.13835.
Laenen B, Machac A, Gradstein SR, Shaw B, Patiño J, Désamoré A, Goffinet B, Cox CJ, Shaw AJ, Vanderpoorten A. 2016b. Geographic range in liverworts: does sex really matter? Journal of Biogeography. 43 (3): 627–635.
Laenen B, Shaw B, Schneider H, Goffinet B, Paradis E, Désamoré A, Heinrichs J, Villarreal JC, Gradstein SR, McDaniel SF, et al. 2014. Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Communications. 5: 5134. https://doi.org/10.1038/ncomms6134.
Lang AS, Bocksberger G, Stech M. 2015. Phylogeny and species delimitations in European Dicranum (Dicranaceae, Bryophyta) inferred from nuclear and plastid DNA. Molecular Phylogenetics and Evolution. 92: 217–225. https://doi.org/10.1016/j.ympev.2015.06.019.
Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, Piednoel M, Gundlach H, Van Bel M, Meyberg R, et al. 2018. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. The Plant Journal. 93 (3): 515–533. https://doi.org/10.1111/tpj.13801.
Lang PLM, Willems FM, Scheepens JF, Burbano HA, Bossdorf O. 2019. Using herbaria to study global environmental change. New Phytologist. 221 (1): 110–122. https://doi.org/10.1111/nph.15401.
Larmola T, Leppänen SM, Tuittila E-S, Aarva M, Merilä P, Fritze H, Tiirola M. 2014. Methanotrophy induces nitrogen fixation during peatland development. Proceedings of the National Academy of Sciences of the United States of America. 111 (2): 734. https://doi.org/10.1073/pnas.1314284111.
Lavoie C. 2013. Biological collections in an ever changing world: herbaria as tools for biogeographical and environmental studies. Perspectives in Plant Ecology, Evolution and Systematics. 15 (1): 68–76. https://doi.org/10.1016/j.ppees.2012.10.002.
Le Roux JJ, Hui C, Castillo ML, Iriondo JM, Keet J-H, Khapugin AA, Médail F, Rejmánek M, Theron G, Yannelli FA, et al. 2019. Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. Current Biology. 29 (17): 2912–2918.e2912. https://doi.org/10.1016/j.cub.2019.07.063.
Leberger R, Rosa IMD, Guerra CA, Wolf F, Pereira HM. 2020. Global patterns of forest loss across IUCN categories of protected areas. Biological Conservation. 241: 108299. https://doi.org/10.1016/j.biocon.2019.108299.
Ledent A, Désamoré A, Laenen B, Mardulyn P, McDaniel SF, Zanatta F, Patiño J, Vanderpoorten A. 2019. No borders during the post-glacial assembly of European bryophytes. Ecology Letters. 22 (6): 973–986. https://doi.org/10.1111/ele.13254.
Ledent A, Gauthier J, Pereira M, Overson R, Laenen B, Mardulyn P, Gradstein SR, de Haan M, Ballings P, Van der Beeten I, et al. 2020. What do tropical cryptogams reveal? Strong genetic structure in Amazonian bryophytes. New Phytologist. 228 (2): 640–650. https://doi.org/10.1111/nph.16720.
Lelli C, Bruun HH, Chiarucci A, Donati D, Frascaroli F, Fritz Ö, Goldberg I, Nascimbene J, Tøttrup AP, Rahbek C, et al. 2019. Biodiversity response to forest structure and management: comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. Forest Ecology and Management. 432: 707–717. https://doi.org/10.1016/j.foreco.2018.09.057.
Lenton TM, Crouch M, Johnson M, Pires N, Dolan L. 2012. First plants cooled the Ordovician. Nature Geoscience. 5 (2): 86–89. https://doi.org/10.1038/ngeo1390.
Lewis LR, Behling E, Gousse H, Qian E, Elphick CS, Lamarre J-F, Bêty J, Liebezeit J, Rozzi R, Goffinet B. 2014. First evidence of bryophyte diaspores in the plumage of transequatorial migrant birds. PeerJ. 2: e424. https://doi.org/10.7717/peerj.424.
Lewis LR, Ickert-Bond SM, Biersma EM, Convey P, Goffinet B, Hassel K, Kruijer H, Farge CL, Metzgar J, Stech M, et al. 2017. Future directions and priorities for Arctic bryophyte research. Arctic Science. 3 (3): 475–497. https://doi.org/10.1139/as-2016-0043.
Li F-W, Nishiyama T, Waller M, Frangedakis E, Keller J, Li Z, Fernandez-Pozo N, Barker MS, Bennett T, Blázquez MA, et al. 2020. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants. 6 (3): 259–272. https://doi.org/10.1038/s41477-020-0618-2.
Liebner S, Zeyer J, Wagner D, Schubert C, Pfeiffer E-M, Knoblauch C. 2011. Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. Journal of Ecology. 99 (4): 914–922. https://doi.org/10.1111/j.1365-2745.2011.01823.x.
Lindo Z, Gonzalez A. 2010. The bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems. 13 (4): 612–627. https://doi.org/10.1007/s10021-010-9336-3.
Lindo Z, Nilsson M-C, Gundale MJ. 2013. Bryophyte–cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Global Change Biology. 19 (7): 2022–2035. https://doi.org/10.1111/gcb.12175.
Liu Y, Johnson MG, Cox CJ, Medina R, Devos N, Vanderpoorten A, Hedenäs L, Bell NE, Shevock JR, Aguero B, et al. 2019. Resolution of the ordinal phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nature Communications. 10 (1): 1485. https://doi.org/10.1038/s41467-019-09454-w.
Liu J, Zheng S, Tiwari RM, Liu L, Han W, Liu J. 2020. Similar mechanisms underlie beta diversity of bryophytes in two archipelagos with different isolation time. Ecosphere. 11 (11): e03296. https://doi.org/10.1002/ecs2.3296.
Löbel S, Mair L, Lönnell N, Schröder B, Snäll T. 2018. Biological traits explain bryophyte species distributions and responses to forest fragmentation and climatic variation. Journal of Ecology. 106 (4): 1700–1713. https://doi.org/10.1111/1365-2745.12930.
Löbel S, Rydin H. 2009. Dispersal and life history strategies in epiphyte metacommunities: alternative solutions to survival in patchy, dynamic landscapes. Oecologia. 161 (3): 569–579.
Löbel S, Snäll T, Rydin H. 2006. Species richness patterns and metapopulation processes–evidence from epiphyte communities in boreo-nemoral forests. Ecography. 29 (2): 169–182. https://doi.org/10.1111/j.2006.0906-7590.04348.x.
Lönnell N, Hylander K, Jonsson BG, Sundberg S. 2012. The fate of the missing spores–patterns of realized dispersal beyond the closest vicinity of a sporulating moss. PLoS One. 7 (7): e41987. https://doi.org/10.1371/journal.pone.0041987.
Lönnell N, Jonsson BG, Hylander K. 2014. Production of diaspores at the landscape level regulates local colonization: an experiment with a spore-dispersed moss. Ecography. 37 (6): 591–598. https://doi.org/10.1111/j.1600-0587.2013.00530.x.
Lönnell N, Norros V, Sundberg S, Rannik Ü, Johansson V, Ovaskainen O, Hylander K. 2015. Testing a mechanistic dispersal model against a dispersal experiment with a wind-dispersed moss. Oikos. 124 (9): 1232–1240. https://doi.org/10.1111/oik.01886.
Ma J-Z, Chen X, Mallik A, Bu Z-J, Zhang M-M, Wang S-Z, Sundberg S. 2020. Environmental together with interspecific interactions determine bryophyte distribution in a protected mire of Northeast China. Frontiers in Earth Science. 8: 32. https://doi.org/10.3389/feart.2020.00032.
Maciel-Silva AS, Válio IFM, Rydin H. 2012. Diaspore bank of bryophytes in tropical rain forests: the importance of breeding system, phylum and microhabitat. Oecologia. 168 (2): 321–333. https://doi.org/10.1007/s00442-011-2100-3.
Magdy M, Werner O, McDaniel SF, Goffinet B, Ros RM. 2016. Genomic scanning using AFLP to detect loci under selection in the moss Funaria hygrometrica along a climate gradient in the Sierra Nevada Mountains, Spain. Plant Biology. 18 (2): 280–288. https://doi.org/10.1111/plb.12381.
Magill RE. 2010. Moss diversity: new look at old numbers. Phytotaxa. 9 (1): 167–174. https://doi.org/10.11646/phytotaxa.9.1.9.
Mälson K, Rydin H. 2009. Competitive hierarchy, but no competitive exclusions in experiments with rich fen bryophytes. Journal of Bryology. 31 (1): 41–45. https://doi.org/10.1179/174328209X404916.
Mammola S, Amorim IR, Bichuette ME, Borges PAV, Cheeptham N, Cooper SJB, Culver DC, Deharveng L, Eme D, Ferreira RL, et al. 2020. Fundamental research questions in subterranean biology. Biological Reviews. 95 (6): 1855–1872. https://doi.org/10.1111/brv.12642.
Marino P, Raguso R, Goffinet B. 2009. The ecology and evolution of fly dispersed dung mosses (family Splachnaceae): Manipulating insect behaviour through odour and visual cues. Symbiosis. 47 (2): 61–76. https://doi.org/10.1007/BF03182289.
Martin-Roy R, Nygård E, Nouhaud P, Kulmuni J. 2021. Differences in thermal tolerance between parental species could fuel thermal adaptation in hybrid wood ants. The American Naturalist. 198 (2): 278–294. https://doi.org/10.1086/715012.
Martinez-Swatson K, Mihály E, Lange C, Ernst M, Dela Cruz M, Price MJ, Mikkelsen TN, Christensen JH, Lundholm N, Rønsted N. 2020. Biomonitoring of polycyclic aromatic hydrocarbon deposition in greenland using historical moss herbarium specimens shows a decrease in pollution during the 20th century. Frontiers in Plant Science. 11: 1085.
McDaniel SF. 2021. Bryophytes are not early diverging land plants. New Phytologist. 230 (4): 1300–1304. https://doi.org/10.1111/nph.17241.
Medina NG, Albertos B, Lara F, Mazimpaka V, Garilleti R, Draper D, Hortal J. 2014. Species richness of epiphytic bryophytes: drivers across scales on the edge of the Mediterranean. Ecography. 37 (1): 80–93. https://doi.org/10.1111/j.1600-0587.2013.00095.x.
Medina NG, Bowker MA, Hortal J, Mazimpaka V, Lara F. 2018a. Shifts in the importance of the species pool and environmental controls of epiphytic bryophyte richness across multiple scales. Oecologia. 186 (3): 805–816. https://doi.org/10.1007/s00442-018-4066-x.
Medina NG, Draper I, Lara F. 2011. Biogeography of mosses and allies: does size matter? In: Fontaneto D, editor. Biogeography of micro-organisms. Is everything small everywhere? Cambridge: Cambridge University Press; p. 209–233.
Medina R, Johnson MG, Liu Y, Wickett NJ, Shaw AJ, Goffinet B. 2019. Phylogenomic delineation of Physcomitrium (Bryophyta: Funariaceae) based on targeted sequencing of nuclear exons and their flanking regions rejects the retention of Physcomitrella, Physcomitridium and Aphanorrhegma. Journal of Systematics and Evolution. 57 (4): 404–417. https://doi.org/10.1111/jse.12516.
Medina R, Johnson M, Liu Y, Wilding N, Hedderson TA, Wickett N, Goffinet B. 2018b. Evolutionary dynamism in bryophytes: phylogenomic inferences confirm rapid radiation in the moss family Funariaceae. Molecular Phylogenetics and Evolution. 120: 240–247. https://doi.org/10.1016/j.ympev.2017.12.002.
Medina R, Lara F, Goffinet B, Garilleti R, Mazimpaka V. 2012. Integrative taxonomy successfully resolves the pseudo-cryptic complex of the disjunct epiphytic moss Orthotrichum consimile s.l. (Orthotrichaceae). Taxon. 61 (6): 1180–1198. https://doi.org/10.1002/tax.616002.
Michel P, Payton IJ, Lee WG, During HJ. 2013. Impact of disturbance on above-ground water storage capacity of bryophytes in New Zealand indigenous tussock grassland ecosystems. New Zealand Journal of Ecology. 37 (1): 114–126.
Mod HK, le Roux PC, Guisan A, Luoto M. 2015. Biotic interactions boost spatial models of species richness. Ecography. 38 (9): 913–921. https://doi.org/10.1111/ecog.01129.
Moncrieff J, Valentini R, Greco S, Guenther S, Ciccioli P. 1997. Trace gas exchange over terrestrial ecosystems: methods and perspectives in micrometeorology. Journal of Experimental Botany. 48 (5): 1133–1142. https://doi.org/10.1093/jxb/48.5.1133.
Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S, Wellman CH, Yang Z, Schneider H, Donoghue PCJ. 2018. The timescale of early land plant evolution. Proceedings of the National Academy of Sciences of the United States of America. 115 (10): E2274. https://doi.org/10.1073/pnas.1719588115.
Mota de Oliveira S, ter Steege H. 2015. Bryophyte communities in the Amazon forest are regulated by height on the host tree and site elevation. Journal of Ecology. 103 (2): 441–450. https://doi.org/10.1111/1365-2745.12359.
Mota de Oliveira S, Ter Steege H, Cornelissen JHC, Robbert Gradstein S. 2009. Niche assembly of epiphytic bryophyte communities in the Guianas: a regional approach. Journal of Biogeography. 36 (11): 2076–2084. https://doi.org/10.1111/j.1365-2699.2009.02144.x.
Muñoz J, Felicísimo ÁM, Cabezas F, Burgaz AR, Martínez I. 2004. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science. 304 (5674): 1144–1147. https://doi.org/10.1126/science.1095210.
Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature. 403 (6772): 853–858. https://doi.org/10.1038/35002501.
Myszczyński K, Bączkiewicz A, Buczkowska K, Ślipiko M, Szczecińska M, Sawicki J. 2017. The extraordinary variation of the organellar genomes of the Aneura pinguis revealed advanced cryptic speciation of the early land plants. Scientific Reports. 7 (1): 9804. https://doi.org/10.1038/s41598-017-10434-7.
Naramoto S, Hata Y, Fujita T, Kyozuka J. 2022. The bryophytes Physcomitrium patens and Marchantia polymorpha as model systems for studying evolutionary cell and developmental biology in plants. The Plant Cell. 34 (1): 228–246. https://doi.org/10.1093/plcell/koab218.
Natcheva R, Cronberg N. 2004. What do we know about hybridization among bryophytes in nature? Canadian Journal of Botany. 82: 1687–1704.
Nelson JM, Hauser DA, Hinson R, Shaw AJ. 2018. A novel experimental system using the liverwort Marchantia polymorpha and its fungal endophytes reveals diverse and context-dependent effects. New Phytologist. 218 (3): 1217–1232. https://doi.org/10.1111/nph.15012.
Nieto-Lugilde M, Werner O, McDaniel SF, Koutecký P, Kučera J, Rizk SM, Ros RM. 2018a. Peripatric speciation associated with genome expansion and female-biased sex ratios in the moss genus Ceratodon. American Journal of Botany. 105 (6): 1009–1020. https://doi.org/10.1002/ajb2.1107.
Nieto-Lugilde M, Werner O, McDaniel SF, Ros RM. 2018b. Environmental variation obscures species diversity in southern European populations of the moss genus Ceratodon. Taxon. 67 (4): 673–692. https://doi.org/10.12705/674.1.
Øien D-I, Pedersen B, Kozub Ł, Goldstein K, Wilk M. 2018. Long-term effects of nutrient enrichment controlling plant species and functional composition in a boreal rich fen. Journal of Vegetation Science. 29 (5): 907–920. https://doi.org/10.1111/jvs.12674.
Olena M, Hans KS, James DMS, Kjell IF, Magni OK, Kristian H. 2018. Is interspecific gene flow and speciation in peatmosses (Sphagnum) constrained by phylogenetic relationship and life-history traits? Lindbergia. 41 (1): 1–14. https://doi.org/10.25227/linbg.01107.
Oliver MJ, Velten J, Mishler BD. 2005. Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integrative and Comparative Biology. 45 (5): 788–799. https://doi.org/10.1093/icb/45.5.788.
Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding T-S, Rasmussen PC, Ridgely RS, et al. 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature. 436 (7053): 1016–1019. https://doi.org/10.1038/nature03850.
Otero S, Núñez-Olivera E, Martínez-Abaigar J, Tomás R, Huttunen S. 2009. Retrospective bioindication of stratospheric ozone and ultraviolet radiation using hydroxycinnamic acid derivatives of herbarium samples of an aquatic liverwort. Environmental Pollution. 157 (8–9): 2335–2344. https://doi.org/10.1016/j.envpol.2009.03.025.
Ovaskainen O, Tikhonov G, Norberg A, Guillaume Blanchet F, Duan L, Dunson D, Roslin T, Abrego N. 2017. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters. 20 (5): 561–576. https://doi.org/10.1111/ele.12757.
Pan Z, Pitt WG, Zhang Y, Wu N, Tao Y, Truscott TT. 2016. The upside-down water collection system of Syntrichia caninervis. Nature Plants. 2 (7): 16076. https://doi.org/10.1038/nplants.2016.76.
Pardow A, Lakatos M. 2013. Desiccation tolerance and global change: implications for tropical bryophytes in lowland forests. Biotropica. 45 (1): 27–36. https://doi.org/10.1111/j.1744-7429.2012.00884.x.
Patel N, Medina R, Johnson M, Goffinet B. 2021. Karyotypic diversity and cryptic speciation: have we vastly underestimated moss species diversity? Bryophyte Diversity and Evolution. 36: 150–163.
Patiño J, Carine MA, Fernández-Palacios JM, Otto R, Schaefer H, Vanderpoorten A. 2014. The anagenetic world of the spore-producing plants. New Phytologist. 201: 305–311. https://doi.org/10.1111/nph.12480.
Patiño J, Carine MA, Mardulyn P, Devos N, Mateo RG, González-Mancebo JM, Shaw AJ, Vanderpoorten A. 2015. Approximate Bayesian computation reveals the crucial role of oceanic islands for the assembly of continental biodiversity. Systematic Biology. 64 (4): 579–589. https://doi.org/10.1093/sysbio/syv013.
Patiño J, González-Mancebo JM. 2011. Exploring the effect of host tree identity on epiphyte bryophyte communities in different Canarian subtropical cloud forests. Plant Ecology. 212 (3): 433–449.
Patiño J, Mateo RG, Zanatta F, Marquet A, Aranda SC, Borges PAV, Dirkse G, Gabriel R, Gonzalez-Mancebo JM, Guisan A, et al. 2016. Climate threat on the Macaronesian endemic bryophyte flora. Scientific Reports. 6: 29156. https://doi.org/10.1038/srep29156.
Patiño J, Vanderpoorten A. 2018. Bryophyte biogeography. Critical Reviews in Plant Sciences. 37 (2–3): 175–209. https://doi.org/10.1080/07352689.2018.1482444.
Patiño J, Vanderpoorten A. 2021. Island biogeography: an avenue for research in bryology. Bryophyte Diversity and Evolution. 43: 206–220.
Patiño J, Whittaker RJ, Borges PAV, Fernández-Palacios JM, Ah-Peng C, Araújo MB, Ávila SP, Cardoso P, Cornuault J, de Boer EJ, et al. 2017. A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. Journal of Biogeography. 44 (5): 963–983. https://doi.org/10.1111/jbi.12986.
Perley DS, Jesson LK. 2015. Hybridization is associated with changes in sexual system in the bryophyte genus Atrichum. American Journal of Botany. 102 (4): 555–565. https://doi.org/10.3732/ajb.1400494.
Pfeiffer T, Fritz S, Stech M, Frey W. 2006. Vegetative reproduction and clonal diversity in Rhytidium rugosum (Rhytidiaceae, Bryopsida) inferred by morpho-anatomical and molecular analyses. Journal of Plant Research. 119 (2): 125–135. https://doi.org/10.1007/s10265-005-0255-x.
Pharo EJ, Zartman CE. 2007. Bryophytes in a changing landscape: the hierarchical effects of habitat fragmentation on ecological and evolutionary processes. Biological Conservation. 135 (3): 315–325. https://doi.org/10.1016/j.biocon.2006.10.016.
Pohjamo M, Laaka-Lindberg S. 2003. Reproductive modes in the epixylic hepatic Anastrophyllum hellerianum. Perspectives in Plant Ecology, Evolution and Systematics. 6 (3): 159–168. https://doi.org/10.1078/1433-8319-00074.
Pohjamo M, Laaka-Lindberg S, Ovaskainen O, Korpelainen H. 2006. Dispersal potential of spores and asexual propagules in the epixylic hepatic Anastrophyllum hellerianum. Evolutionary Ecology. 20 (5): 415–430.
Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD. 2007. Desiccation-tolerance in bryophytes: a review. The Bryologist. 110 (4): 595–621.
Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D, et al. 2018. The interrelationships of land plants and the nature of the ancestral embryophyte. Current Biology. 28 (5): 733–745.e732. https://doi.org/10.1016/j.cub.2018.01.063.
Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S, Sinninghe Damsté JS, Lamers LPM, et al. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature. 436 (7054): 1153–1156. https://doi.org/10.1038/nature03802.
Rahmatpour N, Perera NV, Singh V, Wegrzyn JL, Goffinet B. 2021. High gene space divergence contrasts with frozen vegetative architecture in the moss family Funariaceae. Molecular Phylogenetics and Evolution. 154: 106965. https://doi.org/10.1016/j.ympev.2020.106965.
Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N, Rafajlović M, Noor MAF, Mehlig B, Westram AM. 2017. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. Journal of Evolutionary Biology. 30 (8): 1450–1477. https://doi.org/10.1111/jeb.13047.
Reeb C, Kaandorp J, Jansson F, Puillandre N, Dubuisson J-Y, Cornette R, Jabbour F, Coudert Y, Patiño J, Flot J-F, et al. 2018. Quantification of complex modular architecture in plants. New Phytologist. 218 (2): 859–872. https://doi.org/10.1111/nph.15045.
Renner MAM. 2020. Opportunities and challenges presented by cryptic bryophyte species. Telopea. 23: 41–60.
Renner MAM, Devos N, Patiño J, Brown E, Orme A, Elgy M, Wilson T, Gray L, von Konrat M. 2013. Integrative taxonomy resolves the cryptic and pseudo-cryptic Radula buccinifera complex (Porellales, Jungermanniopsida), including two reinstated and five new species. PhytoKeys. 27 (0): 1–113. https://doi.org/10.3897/phytokeys.27.5523.
Ricciardi A, Blackburn TM, Carlton JT, Dick JTA, Hulme PE, Iacarella JC, Jeschke JM, Liebhold AM, Lockwood JL, MacIsaac HJ, et al. 2017. Invasion science: a horizon scan of emerging challenges and opportunities. Trends in Ecology and Evolution. 32 (6): 464–474. https://doi.org/10.1016/j.tree.2017.03.007.
Rikkinen J, Virtanen V. 2008. Genetic diversity in cyanobacterial symbionts of thalloid bryophytes. Journal of Experimental Botany. 59 (5): 1013–1021. https://doi.org/10.1093/jxb/ern003.
Rimington WR, Duckett JG, Field KJ, Bidartondo MI, Pressel S. 2020. The distribution and evolution of fungal symbioses in ancient lineages of land plants. Mycorrhiza. 30 (1): 23–49. https://doi.org/10.1007/s00572-020-00938-y.
Rosengren F, Hansson B, Cronberg N. 2015. Population structure and genetic diversity in the nannandrous moss Homalothecium lutescens: does the dwarf male system facilitate gene flow? BMC Evolutionary Biology. 15 (1): 270. https://doi.org/10.1186/s12862-015-0545-4.
Rosenstiel TN, Shortlidge EE, Melnychenko AN, Pankow JF, Eppley SM. 2012. Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. Nature. 489 (7416): 431–433.
Rousk K, DeLuca TH, Rousk J. 2013a. The cyanobacterial role in the resistance of feather mosses to decomposition–toward a new hypothesis. PLoS One. 8 (4): e62058. https://doi.org/10.1371/journal.pone.0062058.
Rousk K, Jones D, DeLuca T. 2013b. Moss–cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Frontiers in Microbiology. 4: 150. https://doi.org/10.3389/fmicb.2013.00150.
Rousk K, Sorensen PL, Lett S, Michelsen A. 2015. Across-habitat comparison of diazotroph activity in the subarctic. Microbial Ecology. 69 (4): 778–787. https://doi.org/10.1007/s00248-014-0534-y.
Rozzi R, Massardo F, Anderson CB. 2004. The Cape Horn Biosphere Reserve: a proposal for conservation and tourism to achieve sustainable development at the southern end of the Americas. Punta Arenas, Chile: Ediciones Universidad de Magallanes.
Rozzi R, Massardo F, Berghöfer A, Anderson CB, Mansilla A, Mansilla M, Plana J, Berghöfer U, Araya P, Barros E. 2006. Cape Horn biosphere reserve: nomination document for the incorporation of the cape horn archipelago territory into the world biosphere reserve network. Punta Arenas, Chile: MaB Program–UNESCO Ediciones de la Universidad de Magallanes.
Ruete A, Yang W, Bärring L, Stenseth NC, Snäll T. 2012. Disentangling effects of uncertainties on population projections: climate change impact on an epixylic bryophyte. Proceedings of the Royal Society B: Biological Sciences. 279 (1740): 3098–3105. https://doi.org/10.1098/rspb.2012.0428.
Rydgren K, Halvorsen R, Cronberg N. 2010. Infrequent sporophyte production maintains a female-biased sex ratio in the unisexual clonal moss Hylocomium splendens. Journal of Ecology. 98 (5): 1224–1231. https://doi.org/10.1111/j.1365-2745.2010.01639.x.
Sage RF. 2020. Global change biology: a primer. Global Change Biology. 26 (1): 3–30. https://doi.org/10.1111/gcb.14893.
Sanbonmatsu K, Spalink D. Forthcoming 2022. Spatial phylogenetics of mosses (Bryopsida) at a global scale: current status and future directions. Journal of Biogeography.
Sawangproh W, Cronberg N. 2021. Evidence for interspecific hybridization in bryophytes during pre-molecular and molecular eras. Bryophyte Diversity and Evolution. (36): 180–205.
Sawangproh W, Hedenäs L, Lang AS, Hansson B, Cronberg N. 2020. Gene transfer across species boundaries in bryophytes: evidence from major life cycle stages in Homalothecium lutescens and H. sericeum. Annals of Botany. 125 (4): 565–579. https://doi.org/10.1093/aob/mcz209.
Scherrer D, Körner C. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography. 38 (2): 406–416. https://doi.org/10.1111/j.1365-2699.2010.02407.x.
Schwarzer C, Joshi J. 2017. Parallel adaptive responses to abiotic but not biotic conditions after cryptic speciation in European peat moss Sphagnum magellanicum Brid. Perspectives in Plant Ecology, Evolution and Systematics. 26: 14–27. https://doi.org/10.1016/j.ppees.2017.03.001.
Schween G, Gorr G, Hohe A, Reski R. 2003. Unique tissue-specific cell cycle in Physcomitrella. Plant Biology. 5 (1): 50–58. https://doi.org/10.1055/s-2003-37984.
Seddon AWR, Mackay AW, Baker AG, Birks HJB, Breman E, Buck CE, Ellis EC, Froyd CA, Gill JL, Gillson L, et al. 2014. Looking forward through the past: identification of 50 priority research questions in palaeoecology. Journal of Ecology. 102 (1): 256–267. https://doi.org/10.1111/1365-2745.12195.
Sharp NP, Sandell L, James CG, Otto SP. 2018. The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast. Proceedings of the National Academy of Sciences of the United States of America. 115 (22): E5046. https://doi.org/10.1073/pnas.1801040115.
Shaw AJ. 1985. The relevance of ecology to species concepts in bryophytes. The Bryologist. 88: 199–206.
Shaw AJ. 2001. Biogeographic patterns and cryptic speciation in bryophytes. Journal of Biogeography. 28: 253–261.
Shaw AJ. 2009. Bryophyte species and speciation. In: Goffinet B, Shaw AJ, editors. Bryophyte biology, 2nd ed. Cambridge: Cambridge University Press; p. 445–486.
Shaw AJ, Cymon JC, Goffinet B. 2005. Global patterns of moss diversity: taxonomic and molecular inferences. Taxon. 54 (2): 337–352. https://doi.org/10.2307/25065362.
Shaw AJ, Devos N, Cox CJ, Boles SB, Shaw B, Buchanan AM, Cave L, Seppelt R. 2010. Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling? Molecular Phylogenetics and Evolution. 55: 1139–1145. https://doi.org/10.1016/j.ympev.2010.01.020.
Shaw AJ, Szövényi P, Shaw B. 2011. Bryophyte diversity and evolution: windows into the early evolution of land plants. American Journal of Botany. 98 (3): 352–369. https://doi.org/10.3732/ajb.1000316.
Shaw AJ, Werner O, Ros RM. 2003. Intercontinental Mediterranean disjunct mosses: morphological and molecular patterns. American Journal of Botany. 90 (4): 540–550. https://doi.org/10.3732/ajb.90.4.540.
Shortlidge EE, Carey SB, Payton AC, McDaniel SF, Rosenstiel TN, Eppley SM. 2021. Microarthropod contributions to fitness variation in the common moss Ceratodon purpureus. Proceedings of the Royal Society B: Biological Sciences. 288 (1947): 20210119. https://doi.org/10.1098/rspb.2021.0119.
Sierra AM, Toledo JJ, Salazar Allen N, Zartman CE. 2019. Reproductive traits as predictors of assembly chronosequence patterns in epiphyllous bryophyte metacommunities. Journal of Ecology. 107 (2): 875–886. https://doi.org/10.1111/1365-2745.13058.
Sim-Sim M, Lopes T, Ruas S, Stech M. 2015. Does altitude shape molecular diversity and richness of bryophytes in Madeira’s natural forest? A case study with four bryophyte species at two altitudinal levels. Plant Ecology and Evolution. 148 (2): 171–180. https://doi.org/10.5091/plecevo.2015.1041.
Sim-Sim M, Ruas S, Fontinha S, Hedenäs L, Sergio C, Lobo C. 2014. Bryophyte conservation on a North Atlantic hotspot: threatened bryophytes in Madeira and Selvagens Archipelagos (Portugal). Systematics and Biodiversity. 12 (3): 310–330.
Smith SA, Donoghue MJ. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science. 322 (5898): 86–89.
Smith AB, Godsoe W, Rodríguez-Sánchez F, Wang H-H, Warren D. 2019. Niche estimation above and below the species level. Trends in Ecology and Evolution. 34 (3): 260–273. https://doi.org/10.1016/j.tree.2018.10.012.
Snäll T, Ribeiro Jr PJ, Rydin H. 2003. Spatial occurrence and colonisations in patch-tracking metapopulations: local conditions versus dispersal. Oikos. 103 (3): 566–578. https://doi.org/10.1034/j.1600-0706.2003.12551.x.
Söderström L, Hagborg A, von Konrat M, Bartholomew-Began S, Bell D, Briscoe L, Brown E, Cargill DC, da Costa DP, Crandall-Stotler BJ, et al. 2016. World checklist of hornworts and liverworts. PhytoKeys. 59: 1–828. https://doi.org/10.3897/phytokeys.59.6261.
Soliveres S, Eldridge DJ. 2020. Dual community assembly processes in dryland biocrust communities. Functional Ecology. 34 (4): 877–887. https://doi.org/10.1111/1365-2435.13521.
Soltis PS. 2017. Digitization of herbaria enables novel research. American Journal of Botany. 104 (9): 1281–1284. https://doi.org/10.3732/ajb.1700281.
Song L, Lu H-Z, Xu X-L, Li S, Shi X-M, Chen X, Wu Y, Huang J-B, Chen Q, Liu S, et al. 2016. Organic nitrogen uptake is a significant contributor to nitrogen economy of subtropical epiphytic bryophytes. Scientific Reports. 6 (1): 30408. https://doi.org/10.1038/srep30408.
Sousa F, Civáň P, Brazão J, Foster PG, Cox CJ. 2020a. The mitochondrial phylogeny of land plants shows support for Setaphyta under composition-heterogeneous substitution models. PeerJ. 8: e8995. https://doi.org/10.7717/peerj.8995.
Sousa F, Civáň P, Foster PG, Cox CJ. 2020b. The chloroplast land plant phylogeny: analyses employing better-fitting tree- and site-heterogeneous composition models. Frontiers in Plant Science. 11: 1062. https://doi.org/10.3389/fpls.2020.01062.
Su D, Yang L, Shi X, Ma X, Zhou X, Hedges SB, Zhong B. 2021. Large-scale phylogenomic analyses reveal the monophyly of bryophytes and neoproterozoic origin of land plants. Molecular Biology and Evolution. 38 (8): 3332–3344. https://doi.org/10.1093/molbev/msab106.
Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, et al. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 108 (5): 1028–1046. https://doi.org/10.3852/16-042.
Spitale D. 2016. The interaction between elevational gradient and substratum reveals how bryophytes respond to the climate. Journal of Vegetation Science. 27 (4): 844–853. https://doi.org/10.1111/jvs.12403.
Stanton DE, Coe KK. 2021. 500 million years of charted territory: functional ecological traits in bryophytes. Bryophyte Diversity and Evolution. 36: 234–252.
Stark LR. 2017. Ecology of desiccation tolerance in bryophytes: a conceptual framework and methodology. The Bryologist. 120 (2): 130–165. https://doi.org/10.1639/0007-2745-120.2.130.
Stark LR, Greenwood JL, Brinda JC. 2017. Desiccated Syntrichia ruralis shoots regenerate after 20 years in the herbarium. Journal of Bryology. 39 (1): 85–93. https://doi.org/10.1080/03736687.2016.1176307.
Stearns SC. 2000. Life history evolution: successes, limitations, and prospects. Naturwissenschaften. 87 (11): 476–486.
Stech M, Câmara PEAS, Medina R, Muñoz J. 2021. Advances and challenges in bryophyte biology after 50 years of International Association of Bryologists. Bryophyte Diversity and Evolution. 43: 6–9.
Steffen W, Persson Å, Deutsch L, Zalasiewicz J, Williams M, Richardson K, Crumley C, Crutzen P, Folke C, Gordon L, et al. 2011. The Anthropocene: from global change to planetary stewardship. AMBIO. 40 (7): 739. https://doi.org/10.1007/s13280-011-0185-x.
Struck TH, Feder JL, Bendiksby M, Birkeland S, Cerca J, Gusarov VI, Kistenich S, Larsson K-H, Liow LH, Nowak MD, et al. 2018. Finding evolutionary processes hidden in cryptic species. Trends in Ecology and Evolution. 33 (3): 153–163. https://doi.org/10.1016/j.tree.2017.11.007.
Stuart JEM, Holland-Moritz H, Lewis LR, Jean M, Miller SN, McDaniel SF, Fierer N, Ponciano JM, Mack MC. 2021. Host identity as a driver of moss-associated N2 fixation rates in Alaska. Ecosystems. 24 (3): 530–547. https://doi.org/10.1007/s10021-020-00534-3.
Sukkharak P, Gradstein SR, Stech M. 2011. Phylogeny, taxon circumscriptions, and character evolution in the core Ptychanthoideae (Lejeuneaceae, Marchantiophyta). Taxon. 60 (6): 1607–1622. https://doi.org/10.1002/tax.606006.
Sundberg S. 2013. Spore rain in relation to regional sources and beyond. Ecography. 36 (3): 364–373. https://doi.org/10.1111/j.1600-0587.2012.07664.x.
Sundberg S, Hansson J, Rydin H. 2006. Colonization of Sphagnum on land uplift islands in the Baltic Sea: time, area, distance and life history. Journal of Biogeography. 33: 1479–1491. https://doi.org/10.1111/j.1365-2699.2006.01520.x.
Sutherland WJ, Dias MP, Dicks LV, Doran H, Entwistle AC, Fleishman E, Gibbons DW, Hails R, Hughes AC, Hughes J, et al. 2020. A horizon scan of emerging global biological conservation issues for 2020. Trends in Ecology and Evolution. 35 (1): 81–90. https://doi.org/10.1016/j.tree.2019.10.010.
Sutherland WJ, Fleishman E, Mascia MB, Pretty J, Rudd MA. 2011. Methods for collaboratively identifying research priorities and emerging issues in science and policy. Methods in Ecology and Evolution. 2 (3): 238–247. https://doi.org/10.1111/j.2041-210X.2010.00083.x.
Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC, et al. 2013. Identification of 100 fundamental ecological questions. Journal of Ecology. 101 (1): 58–67. https://doi.org/10.1111/1365-2745.12025.
Szövényi P, Devos N, Weston DJ, Yang X, Hock Z, Shaw JA, Shimizu KK, McDaniel SF, Wagner A. 2014. Efficient purging of deleterious mutations in plants with haploid selfing. Genome Biology and Evolution. 6 (5): 1238–1252. https://doi.org/10.1093/gbe/evu099.
Szövényi P, Ricca M, Hock Z, Shaw JA, Shimizu KK, Wagner A. 2013. Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss. Molecular Biology and Evolution. 30 (8): 1929–1939. https://doi.org/10.1093/molbev/mst095.
Tao Y, Zhang YM. 2012. Effects of leaf hair points of a desert moss on water retention and dew formation: implications for desiccation tolerance. Journal of Plant Research. 125 (3): 351–360. https://doi.org/10.1007/s10265-011-0449-3.
Thompson PL, Guzman LM, De Meester L, Horváth Z, Ptacnik R, Vanschoenwinkel B, Viana DS, Chase JM. 2020. A process-based metacommunity framework linking local and regional scale community ecology. Ecology Letters. 23 (9): 1314–1329. https://doi.org/10.1111/ele.13568.
Tiselius AK, Lundbäck S, Lönnell N, Jansson R, Dynesius M. 2019. Bryophyte community assembly on young land uplift islands–dispersal and habitat filtering assessed using species traits. Journal of Biogeography. 46 (10): 2188–2202. https://doi.org/10.1111/jbi.13652.
Tomescu AMF, Bomfleur B, Bippus AC, Savoretti A. 2018. Why are bryophytes so rare in the fossil record? A spotlight on taphonomy and fossil preservation. In: Krings M, Harper CJ, Cúneo NR, Rothwell GW, editors. Transformative paleobotany. London: Academic Press; p. 375–416.
Trevathan-Tackett SM, Sherman CDH, Huggett MJ, Campbell AH, Laverock B, Hurtado-McCormick V, Seymour JR, Firl A, Messer LF, Ainsworth TD, et al. 2019. A horizon scan of priorities for coastal marine microbiome research. Nature Ecology and Evolution. 3 (11): 1509–1520. https://doi.org/10.1038/s41559-019-0999-7.
Tuba Z, Slack NG, Stark LR. 2011. Bryophyte ecology and climate change. Cambridge, UK: Cambridge University Press.
Turetsky MR. 2003. The role of bryophytes in carbon and nitrogen cycling. The Bryologist. 106 (3): 395–409. https://doi.org/10.1639/05.
Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila ES. 2012. The resilience and functional role of moss in boreal and arctic ecosystems. New Phytologist. 196 (1): 49–67. https://doi.org/10.1111/j.1469-8137.2012.04254.x.
Turnbull JD, Leslie SJ, Robinson SA. 2009. Desiccation protects two Antarctic mosses from ultraviolet-B induced DNA damage. Functional Plant Biology. 36 (3): 214–221. https://doi.org/10.1071/FP08286.
Udd D, Sundberg S, Rydin H. 2016. Multi-species competition experiments with peatland bryophytes. Journal of Vegetation Science. 27 (1): 165–175. https://doi.org/10.1111/jvs.12322.
van den Elzen E, Bengtsson F, Fritz C, Rydin H, Lamers LPM. 2020. Variation in symbiotic N2 fixation rates among Sphagnum mosses. PLoS One. 15 (2): e0228383. https://doi.org/10.1371/journal.pone.0228383.
Van Rooy J, Bergamini A, Bisang I. 2019. Fifty shades of red: lost or threatened bryophytes in Africa. Bothalia. 49 (1): a2341. https://doi.org/10.4102/abc.v49i1.2341.
van Zanten BO. 1978. Experimental studies on trans-oceanic long-range dispersal of moss spores in the southern hemisphere. Journal of the Hattori Botanical Laboratory. 44: 455–482.
Vanderpoorten A, Devos N, Goffinet B, Hardy OJ, Shaw AJ. 2008. The barriers to oceanic island radiation in bryophytes: insights from the phylogeography of the moss Grimmia montana. Journal of Biogeography. 35 (4): 654–663. https://doi.org/10.1111/j.1365-2699.2007.01802.x.
Vanderpoorten A, Goffinet B. 2009. Introduction to bryophytes. Cambridge, UK: Cambridge University Press.
Vanderpoorten A, Hallingbäck T. 2009. Conservation biology. In: Goffinet B, Shaw AJ, editors. Bryophyte biology. 2nd ed. Cambridge, UK: Cambridge University Press; p. 487–533.
Vanderpoorten A, Patiño J, Désamoré A, Laenen B, Górski P, Papp B, Holá E, Korpelainen H, Hardy O. 2019. To what extent are bryophytes efficient dispersers? Journal of Ecology. 107 (5): 2149–2154. https://doi.org/10.1111/1365-2745.13161.
Vellend M. 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology. 85 (2): 183–206.
Vellend M. 2016. The theory of ecological communities. Princeton (NJ): Princeton University Press. (Monographs in Population Biology; 57).
Vigalondo B, Garilleti R, Vanderpoorten A, Patiño J, Draper I, Calleja JA, Mazimpaka V, Lara F. 2019. Do mosses really exhibit so large distribution ranges? Insights from the integrative taxonomic study of the Lewinskya affinis complex (Orthotrichaceae, Bryopsida). Molecular Phylogenetics and Evolution. 140: 106598. https://doi.org/10.1016/j.ympev.2019.106598.
Vile MA, Kelman Wieder R, Živković T, Scott KD, Vitt DH, Hartsock JA, Iosue CL, Quinn JC, Petix M, Fillingim HM, et al. 2014. N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry. 121 (2): 317–328. https://doi.org/10.1007/s10533-014-0019-6.
Villarreal JC, Crandall-Stotler BJ, Hart ML, Long DG, Forrest LL. 2016. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate. New Phytologist. 209 (4): 1734–1746. https://doi.org/10.1111/nph.13716.
Vitt DH, Li Y, Belland RJ. 1995. Patterns of bryophyte diversity in peatlands of continental Western Canada. The Bryologist. 98 (2): 218–227.
von Konrat M, Campbell T, Carter B, Greif M, Bryson M, Larraín J, Trouille L, Cohen S, Gaus E, Qazi A, et al. 2018. Using citizen science to bridge taxonomic discovery with education and outreach. Applications in Plant Sciences. 6 (2): e1023. https://doi.org/10.1002/aps3.1023.
Wall DP. 2005. Origin and rapid diversification of a tropical moss. Evolution. 59 (7): 1413–1424. https://doi.org/10.1111/j.0014-3820.2005.tb01792.x.
Warshan D, Bay G, Nahar N, Wardle DA, Nilsson M-C, Rasmussen U. 2016. Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses. The International Society for Microbial Ecology Journal. 10 (9): 2198–2208. https://doi.org/10.1038/ismej.2016.17.
Weiher E, Freund D, Bunton T, Stefanski A, Lee T, Bentivenga S. 2011. Advances, challenges and a developing synthesis of ecological community assembly theory. Philosophical Transactions of the Royal Society B: Biological Sciences. 366 (1576): 2403–2413. https://doi.org/10.1098/rstb.2011.0056.
Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw AJ, Tuskan GA, Warren JM, Wullschleger SD. 2015. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell and Environment. 38 (9): 1737–1751. https://doi.org/10.1111/pce.12458.
Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences of the United States of America. 11 (45): 4859–4868. https://doi.org/10.1073/pnas.1323926111.
Wiedemann G, van Gessel N, Köchl F, Hunn L, Schulze K, Maloukh L, Nogué F, Decker EL, Hartung F, Reski R. 2018. RecQ helicases function in development, DNA repair, and gene targeting in Physcomitrella patens. The Plant Cell. 30 (3): 717–736. https://doi.org/10.1105/tpc.17.00632.
Wilkinson DM, Koumoutsaris S, Mitchell EAD, Bey I. 2012. Modelling the effect of size on the aerial dispersal of microorganisms. Journal of Biogeography. 39 (1): 89–97. https://doi.org/10.1111/j.1365-2699.2011.02569.x.
Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes J-A, Guisan A, et al. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews. 88 (1): 15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x.
Wu L, Fu S, Wang X, Chang X. 2020. Mapping of atmospheric heavy metal deposition in Guangzhou city, southern China using archived bryophytes. Environmental Pollution. 265: 114998. https://doi.org/10.1016/j.envpol.2020.114998.
Wu ETY, Liu Y, Jennings L, Dong S, Davies TJ. 2021. Detecting the phylogenetic signal of glacial refugia in a bryodiversity hotspot outside the tropics. Diversity and Distributions. https://doi.org/10.1111/ddi.13449.
Zackrisson O, DeLuca TH, Gentili F, Sellstedt A, Jäderlund A. 2009. Nitrogen fixation in mixed Hylocomium splendens moss communities. Oecologia. 160 (2): 309. https://doi.org/10.1007/s00442-009-1299-8.
Zamfir M, Goldberg DE. 2000. The effect of initial density on interactions between bryophytes at individual and community levels. Journal of Ecology. 88: 243–255. https://doi.org/10.1046/j.1365-2745.2000.00442.x.
Zanatta F, Engler R, Collart F, Broennimann O, Mateo RG, Papp B, Muñoz J, Baurain D, Guisan A, Vanderpoorten A. 2020. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nature Communications. 11 (1): 5601. https://doi.org/10.1038/s41467-020-19410-8.
Zanatta F, Patiño J, Lebeau F, Massinon M, Hylander K, de Haan M, Ballings P, Degreef J, Vanderpoorten A. 2016. Measuring spore settling velocity for an improved assessment of dispersal rates in mosses. Annals of Botany. 118 (2): 197–206. https://doi.org/10.1093/aob/mcw092.
Zanatta F, Vanderpoorten A, Hedenäs L, Johansson V, Patiño J, Lönnell N, Hylander K. 2018. Under which humidity conditions are moss spores released? A comparison between species with perfect and specialized peristomes. Ecology and Evolution. 8 (23): 11484–11491. https://doi.org/10.1002/ece3.4579.
Zellweger F, De Frenne P, Lenoir J, Rocchini D, Coomes D. 2019. Advances in microclimate ecology arising from remote sensing. Trends in Ecology and Evolution. 34 (4): 327–341. https://doi.org/10.1016/j.tree.2018.12.012.
Zettlemoyer MA, McKenna DD, Lau JA. 2019. Species characteristics affect local extinctions. American Journal of Botany. 106 (4): 547–559. https://doi.org/10.1002/ajb2.1266.
Zhang J, Fu X-X, Li R-Q, Zhao X, Liu Y, Li M-H, Zwaenepoel A, Ma H, Goffinet B, Guan Y-L, et al. 2020. The hornwort genome and early land plant evolution. Nature Plants. 6 (2): 107–118. https://doi.org/10.1038/s41477-019-0588-4.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.