Area of occupancy; climate change; dendrotelmata; extent of occurrence; Orthotrichaceae; pollarding; Ecology, Evolution, Behavior and Systematics; Plant Science
Abstract :
[en] Introduction: Codonoblepharon forsteri (Dicks.) Goffinet is a rare epiphytic moss characteristically associated with water-filled holes in trees. We reviewed its range and population and assessed effects of climate change. Methods: An inventory of sites from where Codonoblepharon forsteri has been recorded was compiled. Extent of occurrence (EOO) and area of occupancy (AOO) were calculated. Population size was estimated, treating an occupied tree as an ‘individual-equivalent’ of the moss. Climatic conditions of the species’ current distribution were characterised, and an ensemble model of its distribution was generated. The latter was projected onto present and future climatic layers. Key results: Codonoblepharon forsteri has been recorded from 19 countries and 205 sites in Europe, North Africa and Southwest Asia. It has been undergoing an overall decline. Most sites have few occupied trees, and a world population of 1000–10,000 individual-equivalents is estimated. Model projections suggest that the species will experience a range increase of +0.36–0.65 by 2050 and +0.35–0.68 by 2070, especially in its northwest range, particularly across France and the UK. Range loss is predicted to be between –0.20 and –0.39 in 2050 and –0.21 and –0.65 in 2070, affecting the driest areas of the current range around the Mediterranean, especially in North Africa. Conclusions: Codonoblepharon forsteri has a relatively large EOO but relatively small AOO, probably due to habitat specialism. A major reason for recent declines appears to be widespread abandonment of traditional ‘pollarding’ of trees. The potential climatic range of the species will shift significantly northwards over the next few decades.
Callaghan, Des A. ; Bryophyte Surveys Ltd, Bristol, United Kingdom
Aleffi, Michele ; University of Camerino, Camerino, Italy
Alegro, Antun ; University of Zagreb, Zagreb, Croatia
Bisang, Irene ; Swedish Museum of Natural History, Stockholm, Sweden
Blockeel, Tom L.; Dore, Sheffield, United Kingdom
Collart, Flavien ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - Unité aCREA-Ulg (Conseils et Recherches en Ecologie Appliquée) ; University of Lausanne, Lausanne, Switzerland
Dragićević, Snežana ; Natural History Museum of Montenegro, Podgorica, Montenegro
Draper, Isabel ; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Madrid, Spain ; Universidad Autónoma de Madrid, Madrid, Spain
Many thanks to the following for their kind help and support: Ken Adams (Loughton, Essex, UK), Vikki Bengtsson (Pro Natura, Sweden), Klaas van Dort (Wageningen, The Netherlands), Péter Ódor (Institute of Ecology and Botany, Hungary), Chris Preston (Cambridge, UK), Helen Read (The City of London Corporation, UK) and Fred Rumsey (London Natural History Museum, UK). Thanks also to Jairo Patiño and two anonymous reviewers for helpful comments on a draft of the manuscript.
Adams KJ, Rumsey F. 2005. Notes on Essex specialities: 9. The distribution of the Red-data moss Zygodon forsteri (Dicks. ex With.) Mitt. knothole moss (Forster’s yoke-moss) in Epping Forest. Essex Naturalist, New Series. 22: 93–102.
Aleffi M. 2017. Contribution to the knowledge of the bryophyte flora of the Vatican City State: the pontifical villas of Castel Gandolfo (Rome, Italy). Flora Mediterranea. 27: 137–150.
Aleffi M, Allegrini MC, Fuffa X, Muccichini S, Tacchi R. 2005. Briofite e licheni della Selva di Castelfidardo (Marche). Quaderni Della Selva di Castelfidardo. 1: 1–95.
Allorge V. 1957. Zygodon forsteri (Dicks.) Mitt., nouveau pour l’Espagne. Revue Bryologique et Lichénologique. 26: 85.
Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology. 43: 1223–1232.
Araújo MB, New M. 2007. Ensemble forecasting of species distributions. Trends in Ecology and Evolution. 22: 42–47. doi: 10.1016/j.tree.2006.09.010.
Araújo MB, Pearson RG, Thuiller W, Erhard M. 2005. Validation of species-climate impact models under climate change. Global Change Biology. 11: 1504–1513.
Bates JW, Preston CD. 2011. Can the effects of climate change on British bryophytes be distinguished from those resulting from other environmental changes? In: Tuba Z, Slack NG, Stark LR, editors. Bryophyte ecology and climate change. Cambridge: Cambridge University Press; p. 371–407.
Bengtsson V, Niklasson M, Hedin J. 2015. Tree veteranisation–using tools instead of time. Conservation Land Management. 13: 14–17.
Bengtsson V, Wheater CP. 2021. The effects of veteranisation of Quercus robur after eight years. Report No.: 2021:13. Länsstyrelsen Östergötland.
Bergamini A, Bisang I, Hodgetts N, Lockhart N, van Rooy J, Hallingbäck T. 2019. Recommendations for the use of critical terms when applying IUCN red-listing criteria to bryophytes. Lindbergia. 42: 1–5.
Birks HJB. 2005. Mind the gap: how open were European primeval forests? Trends in Ecology and Evolution. 20: 154–156. doi: 10.1016/j.tree.2005.02.001.
Bivand RS, Pebesma E, Gomez-Rubio V. 2013. Applied spatial data analysis with R, second edition. New York (NY: Springer. https://asdar-book.org/.
Blockeel TL. 2010. The bryophytes of Greece: new records and observations, 2. Nova Hedwigia, Beiheft. 138: 129–146.
Bottini A. 1890. Appunti di briologia italiana. Nuovo Giornale Botanico Italiano. 22: 259–266.
Calabrese GM. 2006. A taxonomic revision of Zygodon (Orthotrichaceae) in Southern South America. The Bryologist. 109: 453–509.
Callaghan DA. 2021a. Bryophyte site dossier: Epping Forest SSSI. Unpublished report to Natural England.
Callaghan DA. 2021b. Population status and ecology of Codonoblepharon forsteri (Dicks.) Goffinet in an ancient woodland in Britain. Journal of Bryology. 43. https://www.tandfonline.com/doi/full/ 10.1080/03736687.2021.1985883.
Cano MJ, Guerra J. 2020. Novedades corológicas para la flora briofítica ibérica. IX. Anales de Biología. 42: 1–7. doi: 10.6018/analesbio.42.01.
Casas C, Cros R, Brugués M, Sérgio C, Sim-Sim M. 1985. Estudi de la brioflora dels Ports de Beseit. Orsis. 1: 13–31.
Casas C, Fuertes E, Brugues M, Cros RM, Reinoso J. 1992. Aportaciones a la flora briológica española. Nótula VIII. Los páramos de La Lora (Burgos, España). Studia Botanica. 10: 109–122.
Cezón K, Muñoz J. 2013. Catálogo de los musgos de Castilla-La Mancha (España). Boletin de la Sociedad Española de Briología. 40–41: 15–42.
Cipollaro S, Colacino C. 2005. Bryoflora of the beech-silver fir coenosis of Mount Motola (National Park of Cilento and Vallo di Diano), Teggiano (Salerno, S-Italy). Flora Mediterranea. 15: 385–396.
Colacino C, Evangelista E, D’Avella C, Verona F. 2013. Nuove segnalazioni per la brioflora della Basilicata. Informatore Botanico Italiano. 45: 209–212.
Cros RM. 1981. Calypogeia arguta i Zygodon forsteri, espècies noves per a la brioflora catalana. Folia Botanica Miscellanea. 2: 19–20.
De Notaris G. 1869. Epilogo della briologia italiana. Genova: Co’ tipi del R. I. de’ Sordo-Muti.
Dia MG, Lo Re MG. 2005. Primo rinvenimento in Sicilia di Zygodon forsteri (Orthotrichaceae, Musci), specie ad alta specificità di habitat minacciato in Europa. Quaderni di Botanica Ambientale e Applicata. 16: 275–278.
Didersky MK, Paz S, Frelich LE, Jagodzinski AM. 2017. How much does climate change threaten European forest tree species distributions? Global Change Biology. 24: 1150–163. doi: 10.1111/gcb.13925.
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitao PJ, Münkemüller T. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 36: 27–46.
Draper I, Garilleti R, Calleja Alarcón JA, Flagmeier M, Mazimpaka V, Vigalondo B, Lara F. 2021. Insights into the evolutionary history of the subfamily Orthotrichoideae (Orthotrichaceae, Bryophyta): new and former supra-specific taxa so far obscured by prevailing homoplasy. Frontiers in Plant Science. 12: 629035.
Dreesen P. 1927. Die Laubmoose des Siebengebirges. Berichte über die Versammlungen des Botanischen und des Zoologischen Vereins für Rheinland-Westfalen. 1926: 51–58.
Düll R. 1980. Die Moose (Bryophyta) des Rheinlandes (Nordrhein-Westfalen, Bundesrepublik Deutschland). Decheniana Beiheft. 24: 1–365.
Düll R. 1994. Deutschlands Moose. Bad-Münstereifel: IDH-Verlag.
Düll R. 1995. Moose von Thessalien (Bryophytes of Thessalia). Bryologische Beiträge. 10: 192–208.
Düll R. 1999. Bryological results of some excursions in former Yugoslavia. Bryologische Beiträge. 11: 95–110.
Düll R. 2014. A survey of the bryophytes known from the Aegean Islands. Jena: Weissdorn-Verlag.
Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB, Pearman PB, Le Lay G, Piedallu C, Albert CH, et al. 2011. 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology. 17: 2330–2341.
Erdağ A, Kırmacı M. 2010. Zygodon forsteri (Orthotrichaceae, Bryophyta), a new record to the bryophyte flora of Turkey and SW Asia. Nova Hedwigia, Beiheft. 138: 181–186.
Feld J. 1958. Moosflora der Rheinprovinz. Decheniana (Bonn) Beiheft. 6: 1–94.
Fitzgerald C, Bottini A. 1881. Prodromo della briologia dei bacini del Serchio e della Magra. Nuovo Giornale Botanico Italiano. 13: 23–121.
Fleischer M. 1893. Beitrag zur Laubmoosflora Liguriens. In: Penzig OAJ, editor. Atti del Congresso Botanico Internazionale di Genova. 1892; p. 266–310.
Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics. 29: 1189–1232. doi: 10.1214/aos/1013203451.
Garcia C. 2006. Briófitos epífitos de ecossistemas florestais em Portugal: biodiversidade e conservação [ PhD thesis ]. Lisbon: Lisbon University.
Giacomini V. 1938. Muschi della Provincia di Brescia; II contribuzione. Comment, Ateneo Brescia. 15: 85–115.
Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K. 2013. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems. 5: 572–597. doi: 10.1002/jame.20038.
Goberville E, Beaugrand G, Hautekèete NC, Piquot Y, Luczak C. 2015. Uncertainties in the projection of species distributions related to general circulation models. Ecology and Evolution. 5: 1100–1116.
Goffinet B, Shaw AC, Cox CJ, Wickett NJ, Boles SB. 2004. Phylogenetic inferences in the Orthotrichoideae (Orthotrichaceae, Bryophyta) based on variation in four loci from all genomes. In: Goffinet B, Hollowell V, Magill R, editors. Molecular systematics of bryophytes. Monographs in Systematic Botany from the Missouri Botanical Garden. 98: 270–289.
Grgić P. 1972. Epifitska i lignifilna vegetacija mahovina u području prašume Perućice u Bosni. Godišnjak Biološkog Instituta Univerziteta u Sarajevu. 25: 5–41.
Guisan A, Thuiller W, Zimmermann NE. 2017. Habitat suitability and distribution models. Cambridge: Cambridge University Press.
Harris RMB, Grose MR, Lee G, Bindoff NL, Porfirio LL, Fox-Hughes P. 2014. Climate projections for ecologists. Wiley Interdisciplinary Reviews: Climate Change. 5: 621–637.
Heras Pérez P, Infante Sánchez M. 1990. Algunos briófitos nuevos o poco conocidos para el País Vasco (norte de España). Estudios del Museo de Ciencias Naturales de Álava. 5: 39–46.
Heras Pérez P, Infante Sánchez M, Ugarte San Vicente I. 1997. Datos sobre la presencia de Zygodon forsteri (With.) Mitt. (Bryophyta, Musci) en Álava (norte de España). Propuestas para la conservación de este musgo singular de la brioflora vasca. Estudios del Museo de Ciencias Naturales de Álava. 12: 43–50.
Hijmans RJ. 2020. raster: Geographic Data Analysis and Modeling. R package version 3.3-13. https://CRAN.R-project.org/package=raster.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology. 25: 965–1978. doi: 10.1002/joc.1276.
Hill MO, Preston CD. 1998. The geographical relationships of British and Irish bryophytes. Journal of Bryology. 20: 127–226.
Hill MO, Preston CD, Bosanquet SDS, Roy DB. 2007. Bryoatt: attributes of British and Irish mosses, liverworts and hornworts. Cambridge: Centre for Ecology and Hydrology.
Hodgetts N, Calix M, Englefield E, Fettes N, Garcia Criado M, Patin L, Nieto A, Bergamini A, Bisang I, Baisheva E, et al. 2019. A miniature world in decline: European Red List of mosses, liverworts and hornworts. Brussels: IUCN.
Hodgetts N, Lockhart N. 2020. Checklist and country status of European bryophytes–update 2020. Irish Wildlife Manuals, No. 123. Dublin: National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht.
Holmes EM. 1882. Zygodon forsteri, Mitten, in Essex. Journal of Botany (London). 20: 337–338.
Holmes EM. 1906. Mosses and liverworts. In: The Victoria history of the counties of England. Dorset [unpublished typescript]. London: Natural History Museum.
Hugonnot V. 2019. New records for the bryophyte flora of Corsica. Cryptogamie, Bryologie. 40: 153–158.
Hugonnot V, Fovet L. 2009. 20. Zygodon forsteri (Dicks.) Mitt. In: Blockeel TL, Bastos CJP, Bednarek-Ochyra H, Ochyra R, Dulin MV, Fovet L, Garcia C, Hedenäs L, Huggonot V, Kırmacı M, et al. New national and regional bryophyte records, 22. Journal of Bryology. 31: 201–210. doi: 10.1179/037366809X12469790518367.
Ilić M. 2019. Diverzitet, distribucija, diferencijacija mikrostaništa i struktura zajednica mahovina Fruške Gore [ PhD thesis ]. Novi Sad: University of Novi Sad.
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1. 2nd ed. Gland, Switzerland and Cambridge, UK: IUCN.
IUCN Species Survival Commission Red List Technical Working Group. 2021. Mapping standards and data quality for the IUCN Red List spatial data. Version 1.19 (May 2021). Gland: IUCN.
IUCN Standards and Petitions Committee. 2019. Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. Downloadable from http://www.iucnredlist.org/documents/RedListGuidelines.pdf.
Jiménez-Valverde A. 2012. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography. 21: 498–507.
Jones C, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, et al. 2011. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development. 4: 543–570.
Jones EW. 1956. Notes on plants contributed. Transactions of the British Bryological Society. 3: 164–167.
Latzel A. 1931. Vorarbeiten zu einer Laubmoosflora Dalmatiens. Beihefte zum Botanischen Centralblatt. 48: 437–512.
Luisier A. 1939. Recherches bryologiques récentes à Madère. III. Brotéria. Série Ciências Naturais. 8: 40–52.
Luisier A. 1956. Recherches bryologiques récentes à Madère. VII. Brotéria. Série Ciências Naturais. 25: 170–182.
Martínez-Abaigar J, Ederra Induráin A, de Miguel A. 1985. Brioflora del piso de marojal de la Sierra de Cameros. Zubía. 3: 177–195.
Matcham HW, O’Shea BJ. 2005. A review of the genus Codonoblepharon Schwägr. (Bryopsida: Orthotrichaceae). Journal of Bryology. 27: 129–135. doi: 10.1179/037366805X53040.
Mazimpaka V, Lara F. 2014. Codonoblepharon Schwägr. In: Guerra J, Cano MJ, Brugués M, editors. Flora Briofítica Ibérica, vol. 5. Murcia: UMU and SEB; p. 27–30.
McCullagh P, Nelder JA. 1989. Generalized linear models, 2nd ed. London: Chapman and Hall.
Meinunger L, Schröder W. 2007. Verbreitungsatlas der Moose Deutschlands. Band 3. Regensburg: Regensburgische Botanische Gesellschaft.
Mitchell FJ. 2005. How open were European primeval forests? Hypothesis testing using palaeoecological data. Journal of Ecology. 93: 168–177.
Mitten W. 1851. A list of all the mosses and hepaticae hitherto observed in Sussex. Annals and Magazine of Natural History. 8: 305–324. doi: 10.1080/03745486109496225.
Muñoz J, Brugués M, Casas C, Cros RM, Ederra A, Fuertes E, Heras P, Infante M, Sérgio C. 1995. Aportaciones al conocimiento de la flora briológica española. Nótula XI: Hepáticas y musgos de La Liébana (Cantabria, N-España). Boletín de la Sociedad Española de Briología. 7: 1–9.
Natcheva R, Ganeva A. 2009. Threatened bryophytes in Bulgaria: current knowledge, distribution patterns, threats, and conservation activities. Biotechnology and Biotechnological Equipment. 23: 343–346. doi: 10.1080/13102818.2009.10818435.
Németh Cs, Erzberger P. 2015. Anacamptodon splachnoides (Amblystegiaceae): Hungarian populations of a moss species with a peculiar habitat. Studia Botanica Hungarica. 46: 61–75.
Nóbrega M. 1990. Contribuição para a flora das muscíneas da Madeira. Boletim do Museu Municipal do Funchal. 42: 17–38.
Ódor P, van Dort K. 2003. Dead wood inhabiting bryophyte vegetation in two Slovenian beech forest reserves. Zbornik Gozdarstva in Lesarstva. 69: 155–169.
Papp B, Erzberger P, Lőkös L, Szurdoki E, Németh Cs, Buczkó K, Höhn M, Aszalósné Balogh R, Baráth K, Matus G, et al. 2020. Taxonomical and chorological notes 12 (126–136). Studia Botanica Hungarica. 51: 77–98.
Papp B, Szurdoki E. 2017. A Káli-medence környéki hegyek mohaflorisztikai feltárása (Survey on the bryophyte flora of mountains surrounding Káli basin (Balaton-felvidék region, Hungary)). Folia Musei Historico-Naturalis Bakonyiensis, Zirc. 34: 15–27.
Pasquale GA. 1869. Flora vesuviana o catalogo ragionato delle piante del Vesuvio confrontate con quelle dell’Isola di Capri e di altri luoghi circostanti. Atti Dell’Accademia di Scienze, Fisica e Matematica di Napoli. 4: 1–142.
Pebesma EJ, Bivand RS. 2005. Classes and methods for spatial data in R. R News. 5 (2): 266–310. https://cran.r-project.org/doc/Rnews.
Peterken GF. 1996. Natural woodland: ecology and conservation in northern temperate regions. Cambridge: Cambridge University Press.
Petrov S. 1975. Bryophyta Bulgarica. Clavis Diagnostica: Sofia.
Plieninger T, Hartel T, Martín-López B, Beaufoy G, Bergmeier E, Kirby K, Montero MJ, Moreno G, Oteros-Rozas E, Van Uytvanck J. 2015. Wood-pastures of Europe: geographic coverage, social–ecological values, conservation management, and policy implications. Biological Conservation. 190: 70–79.
Proctor MCF. 1961. The habitat of Zygodon forsteri (Brid.) Mitt. in the New Forest, Hants. Transactions of the British Bryological Society. 4: 107–110. doi: 10.1179/006813861804870505.
R Core Team. 2019. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.
Rumsey FR. 2014. Zygodon forsteri (Dicks.) Mitt. in the New Forest. Unpublished report to Natural England.
Sabovljević M. 2003. Bryophyte flora of South Banat (Vojvodina, Yugoslavia). Cryptogamie, Bryologie. 24: 241–252.
Sandron L, Hugonnot V. 2012. The habitat of knothole moss Anacamptodon splachnoides in the Prats-de-Mollo-La Preste protected area (Pyrenées-Orientales, France). Polish Botanical Journal. 57: 317–326.
Schröck C, Bisang I, Caspari S, Hedenäs L, Hodgetts N, Kiebacher T, Kučera J, Ştefănuţ S, Vana J. 2019. Anacamptodon splachnoides. [downloaded 2020 May 1] The IUCN Red List of Threatened Species 2019: e.T84375767A85354616.
Sebek P, Altman J, Platek M, Cizek L. 2013. Is active management the key to the conservation of saproxylic biodiversity? Pollarding promotes the formation of tree hollows. PLoS One. 8: e60456.
Sehlmeyer JF. 1845. Verzeichnis der Cryptogamen, welche um Cöln und in einigen anderen Gegenden der Preußischen Rheinlande gesammelt worden. Verhandlungen des Naturhistorischen Vereins der Preussischen Rheinlande und Westfalens (Bonn). 2: 42–54.
Sendtner O. 1848. Beobachtungen über die Klimatische Verbreitung der Laubmoose durch das Österreichische Küstenland und Dalmatien. Flora. 31: 189–197. 210–221, 229–240.
Sérgio C, Figueira R, Menezes R. 2011. Modeling the distribution of Sematophyllum substrumulosum (Hampe) E. Britton as a signal of climatic changes in Europe. In: Tuba Z, Slack NG, Stark LR, editors. Bryophyte ecology and climate change. Cambridge: Cambridge University Press; p. 427–439.
Sérgio C, Garcia C. 2019. Codonoblepharon forsteri. [downloaded 2020 Apr 2]. The IUCN Red List of Threatened Species 2019: e.T87540862A87728405.
Sérgio C, Garcia CA, Sim-Sim M, Vieira C, Hespanhol H, Stow S. 2013. Atlas e livro vermelho dos briófitos ameaçados de Portugal (Atlas and red data book of endangered bryophytes of Portugal). Lisbon: MUHNAC Documenta Lisboa. 464.
Sérgio C, Sim-Sim M. 1985. Zygodon forsteri (With.) Mitt., um novo elemento para a flora de Portugal. Notulae bryoflorae Lusitanicae I. In: Catarino F, Melo I, editors. Portugaliae Acta Biologica (B), vol. 14. Lisboa: Museu, Laboratório e Jardim Botânico; p. 184–185.
Söylemez B, Ören M, Ursavaş S, Keçeli T. 2017. The bryophyte flora of Sinop Peninsula (Turkey). Biological Diversity and Conservation. 10: 120–129. doi: 10.1111/icad.12207.
Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science. 240: 1285–1293.
Swissbryophytes. 2004–2021. Online Atlas of Swiss Mosses. [Accessed 2021 Oct 19]. https://www.swissbryophytes.ch.
Terracciano A. 1909. Specimen bryologiae et hepaticologiae sardoae. Bullettino Dell’Istituto Botanico Della Regia Università di Sassari. 1: 3–84.
Terroba AG, Draper I, Mazimpaka V, Garilleti R, Lara F. 2019. Codonoblepharon forsteri (Orthotrichaceae) has its most important population in southwestern Spain. Poster presentation at the 2019 conference of the International Association of Bryologists; 9–12 July 2019; Madrid, Spain.
Thuiller W, Georges D, Engler R, Breiner FT. 2016. Biomod2: ensemble platform for species distribution modelling. R Package Version. 3: 3–7.
Townsend CC. 1989. Further mosses from Greece. Journal of Bryology. 15: 626–627.
Vigalondo B, Lara F. 2017. BBS–SEB international bryological meeting 2016 Western Andalusia. Meeting report. Field Bryology. 117: 46–53.
Wilkinson DM, Koumoutsaris S, Mitchell EA, Bey I. 2011. Modelling the effect of size on the aerial dispersal of microorganisms. Journal of Biogeography. 39: 89–97. doi: 10.1111/j.1365-2699.2011.02569.x.
Zanatta F, Engler R, Collart F, Broennimann O, Mateo RG, Papp B, Muñoz J, Baurain D, Guisan A, Vanderpoorten A. 2020. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nature Communications. 11: 5601.
Zou KH, O’Malley AJ, Mauri L. 2007. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 115: 654–657.