Applied Mathematics; General Mathematics; Analysis
Abstract :
[en] We present prevalent results concerning generalized versions of the $T_p^\alpha$ spaces, initially introduced by Calderón and Zygmund. We notably show that the logarithmic correction appearing in the quasi-characterization of such spaces is mandatory for almost every function; it is in particular true for the Hölder spaces, for which the existence of the correction was showed necessary for a specific function. We also show that almost every function from $T_p^α (x0 )$ has α as generalized Hölder exponent at $x_0$ .
Disciplines :
Mathematics
Author, co-author :
Loosveldt, Laurent ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Almeida, A.: Wavelet bases in generalized Besov spaces. J. Math. Anal. Appl. 304, 198–211 (2005) DOI: 10.1016/j.jmaa.2004.09.017
Arneodo, A., Bacry, E., Muzy, J.-F.: The thermodynamics of fractals revisited with wavelets. Physica A 213, 232–275 (1995) DOI: 10.1016/0378-4371(94)00163-N
Arneodo, A., Audit, B., Decoster, N., Muzy, J.-F., Vaillant, C.: The science of disaster. In: Bunder, A., Schellnhuber, H. (eds.) Climate Disruptions, Market Crashes, and Heart Attacks, pp. 27–102. Springer, New York (2002)
Boole, G., Moulton, J.F.: A Treatise on the Calculus of Finite Differences, 2nd edn. Dover, Mineola (1960)
Calderón, A.P., Zygmund, A.: Local properties of solutions of elliptic partial differential equations. Studia Math. 20, 181–225 (1961) DOI: 10.4064/sm-20-2-181-225
Christensen, J.P.R.: On sets of Haar measure zero in Abelian Polish groups. Isr. J. Math. 13, 255–260 (1972) DOI: 10.1007/BF02762799
Clausel, M., Nicolay, S.: Wavelets techniques for pointwise anti-Hölderian irregularity. Constr. Approx. 33, 41–75 (2011) DOI: 10.1007/s00365-010-9120-9
Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure App. Math. 41, 909–996 (1988) DOI: 10.1002/cpa.3160410705
Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics (1992)
Deliège, A., Nicolay, S.: Köppen-Geiger climate classification for Europe recaptured via the Hölder regularity of air temperature data. Pure Appl. Geophys. 173, 2885–2898 (2016) DOI: 10.1007/s00024-016-1339-3
Deliège, A., Kleyntssens, T., Nicolay, S.: Mars topography investigated through the wavelet leaders method: a multidimensional study of its fractal structure. Planet. Space Sci. 136, 46–58 (2017) DOI: 10.1016/j.pss.2016.12.008
Delour, J.: Processus Aléatoire Auto-similaires: Applications en Turbulence et en Finance. PhD thesis, Bordeaux 1 (2001)
Hida, T.: Brownian Motion, vol. 11 of Applications of Mathematics. Springer-Verlag. Translated from Japanese by the author and T.P. Speed (1980)
Hunt, B.: The prevalence of continuous nowhere differentiable functions. Am. Math. Soc. 122, 711–717 (1994) DOI: 10.1090/S0002-9939-1994-1260170-X
Jaffard, S.: Multifractal formalism for functions part I: results valid for all functions. SIAM J. Math. Anal. 28, 944–970 (1997) DOI: 10.1137/S0036141095282991
Jaffard, S.: Wavelet techniques in multifractal analysis, fractal geometry and applications: a jubilee of Benoit Mandelbrot. Proc. Symp. Pure Math. 72, 91–151 (2004) DOI: 10.1090/pspum/072.2/2112122
Jaffard, S., Mandelbrot, B.B.: Local regularity of nonsmooh wavelet expansions and application to the Polya function. Adv. Math. 120, 265–282 (1996) DOI: 10.1006/aima.1996.0039
Jaffard, S., Martin, B.: Multifractal analysis of the Brjuno function. Invent. Math. 212, 109–132 (2018) DOI: 10.1007/s00222-017-0763-z
Jordan, C.: Calculus of Finite Differences, 3rd edn. AMS Chelsea Publishing, Rochester (1965)
Kahane, J.-P.: Some Random Series of Functions. Cambridge University Press, Cambridge (1993)
Khintchine, A.: Über eine Satz der Wahrscheinlichkeitsrechnung. Fund. Math. 6, 9–20 (1924) DOI: 10.4064/fm-6-1-9-20
Kleyntssens, T.: New methods for signal analysis: multifractal formalisms based on profiles. From theory to practice. PhD thesis, Université de Liège (2019)
Kolmogoroff, A.: Über das Gesetz des iterierten Logarithmus. Math. Annal. 101, 126–135 (1929) DOI: 10.1007/BF01454828
Kreit, D., Nicolay, S.: Some characterizations of generalized Hölder spaces. Math. Nachr. 285, 2157–2172 (2012) DOI: 10.1002/mana.201100291
Kreit, D., Nicolay, S.: Generalized pointwise Hölder spaces defined via admissible sequences. J. Funct. Spaces 2018, 11 (2018)
Leonarduzzi, R., Wendt, H., Abry, P., Jaffard, S., Mélot, C.: Finite-resolution effects in p -leader multifractal analysis. IEEE Trans. Signal Process. 65, 3359–3368 (2017) DOI: 10.1109/TSP.2017.2690391
Li, J., Arneodo, A., Nekka, F.: A practical method to experimentally evaluate the hausdorff dimension: an alternative phase-transition-based methodology. Chaos 14, 1004–17 (2004) DOI: 10.1063/1.1803435
Loosveldt, L.: About some Notions of Regularity for Functions. PhD thesis, University of Liège (2021)
Loosveldt, L., Nicolay, S.: Some equivalent definitions of Besov spaces of generalized smoothness. Math. Nachr. 292, 2262–2282 (2019) DOI: 10.1002/mana.201800111
Loosveldt, L., Nicolay, S.: Generalized Tup spaces: on the trail of Calderón and Zygmund. Diss. Math. 554, 1–64 (2020)
Loosveldt, L., Nicolay, S.: Generalized spaces of pointwise regularity: to a general framework for the WLM. Nonlinearity 34, 6561–6586 (2021) DOI: 10.1088/1361-6544/ac1724
Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, Cambridge (1999)
Meyer, Y.: Ondelettes et Opérateurs I: Ondelettes, vol. 1. Hermann, Berlin (1990)
Meyer, Y., Sellan, F., Taqqu, M.S.: Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. J. Fourier Anal. Appl. 5, 465–494 (1999) DOI: 10.1007/BF01261639
Moura, S.D.: On some characterizations of Besov spaces of generalized smoothness. Math. Nachr. 280, 1190–1199 (2007) DOI: 10.1002/mana.200510545
Muzy, J.-F., Bacry, E., Arneodo, A.: Multifractal formalism for fractal signals: the structure function approach versus the wavelet-transform mudulus-maxima method. Phys. Rev. E 47, 875–884 (1993) DOI: 10.1103/PhysRevE.47.875
Nicolay, S., Touchon, M., Audit, B., d’Aubenton Carafa, Y., Thermes, C., Arneodo, A., et al.: Bifractality of human DNA strand-asymmetry profiles results from transcription. Phys. Rev. E 75, 032902 (2007) DOI: 10.1103/PhysRevE.75.032902
Orey, S., Taylor, S.J.: How often on a Brownian path does the law of iterated logarithm fail? Proc. Lond. Math. Soc. 28, 174–192 (1974) DOI: 10.1112/plms/s3-28.1.174
Parisi, G., Frisch, U.: On the singularity structure of fully developed turbulence. In: Ghil, M., Benzi, R., Parisi, G. (eds.) Turbulence and Predictability in Geophysical Fluid Dynamics. vol. Proc. Int. Summer School Phys. “Enrico Fermi”, pp. 84–87, Amsterdam, North Holland (1985)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.