Article (Scientific journals)
Some Prevalent Sets in Multifractal Analysis: How Smooth is Almost Every Function in $T_p^\alpha (x)$
Loosveldt, Laurent; Nicolay, Samuel
2022In Journal of Fourier Analysis and Applications, 28 (4)
Peer reviewed
 

Files


Full Text
prevalencetpa.pdf
Publisher postprint (631.27 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Applied Mathematics; General Mathematics; Analysis
Abstract :
[en] We present prevalent results concerning generalized versions of the $T_p^\alpha$ spaces, initially introduced by Calderón and Zygmund. We notably show that the logarithmic correction appearing in the quasi-characterization of such spaces is mandatory for almost every function; it is in particular true for the Hölder spaces, for which the existence of the correction was showed necessary for a specific function. We also show that almost every function from $T_p^α (x0 )$ has α as generalized Hölder exponent at $x_0$ .
Disciplines :
Mathematics
Author, co-author :
Loosveldt, Laurent  ;  Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Nicolay, Samuel  ;  Université de Liège - ULiège > Mathematics
Language :
English
Title :
Some Prevalent Sets in Multifractal Analysis: How Smooth is Almost Every Function in $T_p^\alpha (x)$
Publication date :
01 July 2022
Journal title :
Journal of Fourier Analysis and Applications
ISSN :
1069-5869
eISSN :
1531-5851
Publisher :
Springer Science and Business Media LLC
Volume :
28
Issue :
4
Peer reviewed :
Peer reviewed
Available on ORBi :
since 02 July 2022

Statistics


Number of views
99 (27 by ULiège)
Number of downloads
19 (13 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
0
OpenCitations
 
1
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi