[en] Strike-slip faults are generally described as continuous structures, while they are actually formed of successive segments separated by geometrical complexities. Although this alongstrike segmentation is known to affect the overall dynamics of earthquakes, the physical processes governing the scale of this segmentation remain unclear. Here, we use analogue models to investigate the structural development of strike-slip faults and the physical parameters controlling segmentation. We show that the length of fault segments is regular along strike and scales linearly with the thickness of the brittle material. Variations of the rheological properties only have minor effects on the scaling relationship. Ratios between the segment length and the brittle material thickness are similar for coseismic ruptures and sandbox experiments. This supports a model where crustal seismogenic thickness controls fault geometry. Finally, we show that the geometrical complexity acquired during strike-slip fault formation withstands cumulative displacement. Thus, the inherited complexity impedes the formation of an ever-straighter fault, and might control the length of earthquake ruptures.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lefevre, Marthe ; Université de Liège - ULiège > Sphères ; Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, France
Souloumiac, P.; Laboratoire Géosciences et Environnement Cergy (GEC), CY Cergy Paris Université, Cergy, France
Cubas, N.; Institut des Sciences de la Terre de Paris (ISTeP), Sorbonne Université, Paris, France
Klinger, Y.; Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, France
Language :
English
Title :
Experimental evidence for crustal control over seismic fault segmentation
This work has been partly funded by Agence Nationale de la Recherche (ANR, France) project GeoSMEC (ANR-12-BS06-0016). This is Institut de Physique du Globe de Paris contribution #4134.
Aochi, H., and Ulrich, T., 2015, A probable earthquake scenario near Istanbul determined from dynamic simulations: Bulletin of the Seismological Society of America, v. 105, p. 1468-1475, https://doi.org/10.1785/0120140283.
Atmaoui, N., Kukowski, N., Stöckhert, B., and König, D., 2006, Initiation and development of pull-apart basins with Riedel shear mechanism: Insights from scaled clay experiments: International Journal of Earth Sciences, v. 95, p. 225-238, https://doi.org/10.1007/s00531-005-0030-1.
Aviles, C.A., Scholz, C.H., and Boatwright, J., 1987, Fractal analysis applied to characteristic segments of the San Andreas Fault: Journal of Geophysical Research, v. 92, p. 331-344, https://doi.org/10.1029/JB092iB01p00331.
Bilham, R., and Williams, P., 1985, Sawtooth segmentation and deformation processes on the southern San Andreas Fault, California: Geophysical Research Letters, v. 12, p. 557-560, https://doi.org/10.1029/GL012i009p00557.
Byerlee, J., 1978, Friction of rocks, in Byerlee, J.D., and Wyss, M., eds., Rock Friction and Earthquake Prediction: Basel, Birkhauser, p. 615-626, https://doi.org/10.1007/978-3-0348-7182-2_4.
Cambonie, T., Klinger, Y., and Lazarus, V., 2019, Similarities between mode III crack growth patterns and strike-slip faults: Philosophical Transactions of the Royal Society A, v. 377, 20170392, https://doi.org/10.1098/rsta.2017.0392.
Dooley, T.P., and Schreurs, G., 2012, Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results: Tectonophysics, v. 574-575, p. 1-71, https://doi.org/10.1016/j.tecto.2012.05.030.
Hatem, A.E., Cooke, M.L., and Toeneboehn, K., 2017, Strain localization and evolving kinematic efficiency of initiating strike-slip faults within wet kaolin experiments: Journal of Structural Geology, v. 101, p. 96-108, https://doi.org/10.1016/j.jsg.2017.06.011.
King, G., and Nábělek, J., 1985, Role of fault bends in the initiation and termination of earthquake rupture: Science, v. 228, p. 984-987, https://doi.org/10.1126/science.228.4702.984.
Klinger, Y., 2010, Relation between continental strike-slip earthquake segmentation and thickness of the crust: Journal of Geophysical Research, v. 115, B07306, https://doi.org/10.1029/2009JB006550.
Klinger, Y., Xu, X., Tapponnier, P., Van der Woerd, J., Lasserre, C., and King, G., 2005, High-resolution satellite imagery mapping of the surface rupture and slip distribution of the Mw ∼7.8, 14 November 2001 Kokoxili earthquake, Kunlun fault, northern Tibet, China: Bulletin of the Seismological Society of America, v. 95, p. 1970-1987, https://doi.org/10.1785/0120040233.
Klinger, Y., Michel, R., and King, G.C.P., 2006, Evidence for an earthquake barrier model from Mw ∼7.8 Kokoxili (Tibet) earthquake slip-distribution: Earth and Planetary Science Letters, v. 242, p. 354-364, https://doi.org/10.1016/j.epsl.2005.12.003.
Klinger, Y., et al., 2018, Earthquake damage patterns resolve complex rupture processes: Geophysical Research Letters, v. 45, p. 10,279-10,287, https://doi.org/10.1029/2018GL078842.
Lauer, B., Grandin, R., Klinger, Y., Vallage, A., Jolivet, R., and Delorme, A., 2018, Absence of shallow slip deficit during the Balochistan earthquake (2013, Mw 7.7, Pakistan): Insights from SAR and optical-based coseismic slip model: Abstract T31I-0348 presented at American Geophysical Union Fall Meeting, Washington, D.C., 10-14 December.
Lozos, J.C., 2016, A case for historic joint rupture of the San Andreas and San Jacinto faults: Science Advances, v. 2, e1500621, https://doi.org/10.1126/sciadv.1500621.
Mandl, G., 1987, Discontinuous fault zones: Journal of Structural Geology, v. 9, p. 105-110, https://doi.org/10.1016/0191-8141(87)90047-2.
Manighetti, I., Campillo, M., Bouley, S., and Cotton, F., 2007, Earthquake scaling, fault segmentation, and structural maturity: Earth and Planetary Science Letters, v. 253, p. 429-438, https://doi.org/10.1016/j.epsl.2006.11.004.
Manighetti, I., Caulet, C., De Barros, L., Perrin, C., Cappa, F., and Gaudemer, Y., 2015, Generic along-strike segmentation of Afar normal faults, East Africa: Implications on fault growth and stress heterogeneity on seismogenic fault planes: Geochemistry Geophysics Geosystems, v. 16, p. 443-467, https://doi.org/10.1002/2014GC005691.
Naylor, M.A., Mandl, G., and Supesteijn, C.H.K., 1986, Fault geometries in basement-induced wrench faulting under different initial stress states: Journal of Structural Geology, v. 8, p. 737-752, https://doi.org/10.1016/0191-8141(86)90022-2.
Okubo, P.G., and Aki, K., 1987, Fractal geometry in the San Andreas Fault System: Journal of Geophysical Research, v. 92, p. 345-355, https://doi.org/10.1029/JB092iB01p00345.
Richard, P.D., Naylor, M.A., and Koopman, A., 1995, Experimental models of strike-slip tectonics: Petroleum Geoscience, v. 1, p. 71-80, https://doi.org/10.1144/petgeo.1.1.71.
Riedel, W., 1929, Zur Mechanik geologischer Brucherscheinungen ein Beitrag zum Problem der Fiederspatten: Zentralblatt für Mineralogie, Geologie und Palaontologie Abteilung B, p. 354-368.
Ritter, M.C., Rosenau, M., and Oncken, O., 2018, Growing faults in the lab: Insights into the scale dependence of the fault zone evolution process: Tectonics, v. 37, p. 140-153, https://doi.org/10.1002/2017TC004787.
Rosu, A.-M., Pierrot-Deseilligny, M., Delorme, A., Binet, R., and Klinger, Y., 2015, Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac: ISPRS Journal of Photogrammetry and Remote Sensing, v. 100, p. 48-59, https://doi.org/10.1016/j.isprsjprs.2014.03.002.
Schwartz, D.P., 2018, Review: Past and future fault rupture lengths in seismic source characterization-The long and short of it: Bulletin of the Seismological Society of America, v. 108, p. 2493-2520, https://doi.org/10.1785/0120160110.
Schwartz, D.P., and Coppersmith, K.J., 1984, Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones: Journal of Geophysical Research, v. 89, p. 5681-5698, https://doi.org/10.1029/JB089iB07p05681.
Segall, P., and Pollard, D.D., 1980, Mechanics of discontinuous faults: Journal of Geophysical Research, v. 85, p. 4337-4350, https://doi.org/10.1029/JB085iB08p04337.
Tchalenko, J.S., 1970, Similarities between shear zones of different magnitudes: Geological Society of America Bulletin, v. 81, p. 1625-1640, https://doi.org/10.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2.
Ueta, K., Tani, K., and Kato, T., 2000, Computerized X-ray tomography analysis of three-dimensional fault geometries in basement-induced wrench faulting: Engineering Geology, v. 56, p. 197-210, https://doi.org/10.1016/S0013-7952(99)00143-X.
Vallée, M., Landès, M., Shapiro, N.M., and Klinger, Y., 2008, The 14 November 2001 Kokoxili (Tibet) earthquake: High-frequency seismic radiation originating from the transitions between sub-Rayleigh and supershear rupture velocity regimes: Journal of Geophysical Research, v. 113, B07305, https://doi.org/10.1029/2007JB005520.
Wei, S., et al., 2011, Superficial simplicity of the 2010 El Mayor-Cucapah earthquake of Baja California in Mexico: Nature Geoscience, v. 4, p. 615-618, https://doi.org/10.1038/ngeo1213.
Wesnousky, S.G., 2006, Predicting the endpoints of earthquake ruptures: Nature, v. 444, p. 358-360, https://doi.org/10.1038/nature05275.
Yang, H., Moresi, L.N., and Quigley, M., 2020, Fault spacing in continental strike-slip shear zones: Earth and Planetary Science Letters, v. 530, 115906, https://doi.org/10.1016/j.epsl.2019.115906.
Zuza, A.V., Yin, A., Lin, J., and Sun, M., 2017, Spacing and strength of active continental strike-slip faults: Earth and Planetary Science Letters, v. 457, p. 49-62, https://doi.org/10.1016/j.epsl.2016.09.041.