[en] TIGRE (Telescopio Internacional de Guanajuato Robótico Espectroscópico) has been operating in fully robotic mode in the La Luz Observatory (Guanajuato, Mexico) since the end of 2013. With its sole instrument, HEROS, an échelle spectrograph with a spectral resolution R ∼20,000, TIGRE has collected more than 48,000 spectra of 1,151 different sources with a total exposure time of more than 11,000 h in these 8 years. Here we briefly describe the system and the upgrades performed during the last years. We present the statistics of the weather conditions at the La Luz Observatory, emphasizing the characteristics that affect the astronomical observations. We evaluate the performance and efficiency of TIGRE, both optical and operational, and describe the improvements of the system implemented to optimize the telescope’s performance and meet the requirements of the astronomer in terms of timing constraints for the observations and the quality of the spectra. We describe the actions taken to slow down the optical efficiency loss due to the aging of the optical surfaces as well as the upgrades of the scheduler and the observing procedures to minimize the time lost due to interrupted observations or observations that do not reach the required quality. Finally, we highlight a few of the main scientific results obtained with TIGRE data.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
González-Pérez, José Nicolás
Mittag, Marco
Schmitt, Jürgen H. M. M.
Schröder, Klaus-Peter
Jack, Dennis
Rauw, Grégor ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Nazé, Yaël ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Language :
English
Title :
Eight Years of TIGRE Robotic Spectroscopy: Operational Experience and Selected Scientific Results
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Andersen M. F. Handberg R. Weiss E. Frandsen S. Simón-Díaz S. Grundahl F. et al. (2019). Conducting the SONG: The Robotic Nature and Efficiency of a Fully Automated Telescope. PASP 131, 045003. 10.1088/1538-3873/aaff7c
Baliunas S. L. Donahue R. A. Soon W. H. Horne J. H. Frazer J. Woodard-Eklund L. et al. (1995). Chromospheric Variations in Main-Sequence Stars. Astrophysical J. 438, 269. 10.1086/175072
Casagrande L. VandenBerg D. A. (2018). On the Use of Gaia Magnitudes and New Tables of Bolometric Corrections. MNRAS 479, L102–L107. 10.1093/mnrasl/sly104
Castro-Tirado A. J. Jelínek M. Gorosabel J. Kubánek P. Cunniffe R. Guziy S. et al. (2012). “Building the BOOTES World-wide Network of Robotic Telescopes,” in Astronomical Society of India Conference Series. Vol. 7 of Astronomical Society of India Conference Series, 313–320.
Castro-Tirado A. J. (2010). Robotic Autonomous Observatories: A Historical Perspective. Adv. Astronomy 2010, 570489. 10.1155/2010/570489
De Gennaro Aquino I. Schröder K.-P. Mittag M. Wolter U. Jack D. Eenens P. et al. (2015). High Spectral Resolution Monitoring of Nova V339 Delphini with TIGRE. Astronomy Astrophysics 581, A134. 10.1051/0004-6361/201525810
Eberhard G. Schwarzschild K. (1913). On the Reversal of the Calcium Lines H and K in Stellar Spectra. Astrophysical J. 38, 292–295. 10.1086/142037
Fraunhofer J. (1817). Bestimmung des Brechungs- und des Farbenzerstreungs-Vermögens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernröhre. Ann. Phys. 56, 264–313. 10.1002/andp.18170560706
Gaia CollaborationBrown A. G. A. Vallenari A. Prusti T. de Bruijne J. H. J. Babusiaux C. et al. (2018). Gaia Data Release 2. Summary of the Contents and Survey Properties. Astronomy Astrophysics 616, A1. 10.1051/0004-6361/201833051
Gutiérrez C. M. Arnold D. Copley D. Copperwheat C. M. Harvey E. Jermak H. et al. (2019). The New 4-m Robotic Telescope. Astron. Nachr. 340, 40–45. 10.1002/asna.201913556
Hempelmann A. Mittag M. Gonzalez-Perez J. N. Schmitt J. H. M. M. Schröder K. P. Rauw G. (2016). Measuring Rotation Periods of Solar-like Stars Using TIGRE. Astronomy Astrophysics 586, A14. 10.1051/0004-6361/201526972
Jack D. Baron E. Hauschildt P. H. (2015a). Identification of the Feature that Causes the I-Band Secondary Maximum of a Type Ia Supernova. MNRAS 449, 3581–3586. 10.1093/mnras/stv474
Jack D. Mittag M. Schröder K.-P. Schmitt J. H. M. M. Hempelmann A. González-Pérez J. N. et al. (2015b). Time Series of High-Resolution Spectra of SN 2014J Observed with the TIGRE Telescope. Mon. Not. R. Astron. Soc. 451, 4104–4113. 10.1093/mnras/stv1238
Jack D. Robles Pérez J. d. J. De Gennaro Aquino I. Schröder K. P. Wolter U. Eenens P. et al. (2017). Study of the Variability of Nova V5668 Sgr, Based on High‐resolution Spectroscopic Monitoring. Astron. Nachr. 338, 91–102. 10.1002/asna.201613217
Jack D. Schröder K.-P. (2019). Interstellar Absorption towards the Novae V339 Del and V5668 Sgr. Rev. Mex. Astron. astrofísica 55, 141–149. 10.22201/ia.01851101p.2019.55.02.02
Jack D. Schröder K. P. Eenens P. Wolter U. González‐Pérez J. N. Schmitt J. H. M. M. et al. (2020). Time Series of Optical Spectra of Nova V659 Sct. Astron. Nachr. 341, 781–790. 10.1002/asna.202013818
Mittag M. (2010). Chromospheric Activity - First Results of the Observations with the Hamburg Robotic Telescope. Ph.D. thesis (Hamburg, Germany: University of Hamburg).
Mittag M. Hempelmann A. Fuhrmeister B. Czesla S. Schmitt J. H. M. M. (2018). Detection of Radial Velocity Variability of HD 16673 with TIGRE. Astron. Nachr. 339, 53–59. 10.1002/asna.201713367
Mittag M. Hempelmann A. González-Pérez J. N. Schmitt J. H. M. M. (2010). The Data Reduction Pipeline of the Hamburg Robotic Telescope. Adv. Astronomy 2010, 1–6. 10.1155/2010/101502
Mittag M. Hempelmann A. Gonzalez-Perez J. N. Schmitt J. H. M. M. (2008). The Temperature Dependence of the Pointing Model of the Hamburg Robotic Telescope. Publ. Astron Soc. Pac 120, 425–429. 10.1086/533478
Mittag M. Hempelmann A. Schmitt J. H. M. M. Fuhrmeister B. González-Pérez J. N. Schröder K.-P. (2017). Stellar Rotation Periods Determined from Simultaneously Measured Ca II H&K and Ca II IRT Lines. Astronomy Astrophysics 607, A87. 10.1051/0004-6361/201630262
Mittag M. Schröder K.-P. Hempelmann A. González-Pérez J. N. Schmitt J. H. M. M. (2016). Chromospheric Activity and Evolutionary Age of the Sun and Four Solar Twins. Astronomy Astrophysics 591, A89. 10.1051/0004-6361/201527542
Nazé Y. Motch C. Rauw G. Kumar S. Robrade J. Lopes de Oliveira R. et al. (2020). Three Discoveries of γ Cas Analogues from Dedicated XMM-Newton Observations of Be Stars. MNRAS 493, 2511–2517. 10.1093/mnras/staa457
Nazé Y. Rauw G. Czesla S. Smith M. A. Robrade J. (2022). Velocity Monitoring of γ Cas Stars Reveals Their Binarity Status. MNRAS 510, 2286–2304. 10.1093/mnras/stab3378
Nazé Y. Rauw G. Smith M. (2019). Surprises in the Simultaneous X-Ray and Optical Monitoring of π Aquarii. Astronomy Astrophysics 632, A23. 10.1051/0004-6361/201936307
Piskunov N. E. Valenti J. A. (2002). New Algorithms for Reducing Cross-Dispersed Echelle Spectra. Astronomy Astrophysics 385, 1095–1106. 10.1051/0004-6361:20020175
Pollacco D. Skillen I. Cameron A. Christian D. Irwin J. Lister T. et al. (2006). The WASP Project and SuperWASP Camera. Astrophys. Space Sci. 304, 253–255. 10.1007/s10509-006-9124-x
Rauw G. Nazé Y. Campos F. Fló J. G. Sollecchia U. (2021). Irregular Emission Cycles in the Oe Star HD 60 848. New Astron. 83, 101462. 10.1016/j.newast.2020.101462
Rauw G. Nazé Y. Smith M. A. Miroshnichenko A. S. Guarro Fló J. Campos F. et al. (2018). Intriguing X-Ray and Optical Variations of the γ Cassiopeiae Analog HD 45314. Astronomy Astrophysics 615, A44. 10.1051/0004-6361/201731782
Rosas Portilla F. Schroder C. F. Jack D. (2022). On the physical nature of the Wilson-Bappu effect: revising the gravity and temperature dependence. MNRAS 513, 906–924. 10.1093/mnras/stac929
Schmitt J. H. M. M. Schröder K.-P. Rauw G. Hempelmann A. Mittag M. González-Pérez J. N. et al. (2014). TIGRE: A New Robotic Spectroscopy Telescope at Guanajuato, Mexico. Astron. Nachr. 335, 787–796. 10.1002/asna.201412116
Schröder K. P. Mittag M. Flor Torres L. M. Jack D. Snellen I. (2021). Fast Synthetic Spectral Fitting for Large Stellar Samples: a Critical Test with 25 Bright Stars of Known Rotation. MNRAS 501, 5042–5050. 10.1093/mnras/staa2261
Schroeder D. J. (2000). Astronomical Optics. Amsterdam, Netherlands: Elsevier.
Smith M. A. Lopes de Oliveira R. Motch C. (2016). The X-Ray Emission of the γ Cassiopeiae Stars. Adv. Space Res. 58, 782–808. 10.1016/j.asr.2015.12.032
Stokes G. H. Evans J. B. Viggh H. E. M. Shelly F. C. Pearce E. C. (2000). Lincoln Near-Earth Asteroid Program (LINEAR). Icarus 148, 21–28. 10.1006/icar.2000.6493
Strassmeier K. G. Granzer T. Weber M. Woche M. Andersen M. I. Bartus J. et al. (2004). The STELLA Robotic Observatory. Astron. Nachr. 325, 527–532. 10.1002/asna.200410273
Sybilski P. W. Pawłaszek R. Kozłowski S. K. Konacki M. Ratajczak M. Hełminiak K. G. (2014). “Software for Autonomous Astronomical Observatories: Challenges and Opportunities in the Age of Big Data,” in Software and Cyberinfrastructure for Astronomy III. Vol. 9152 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Editors Chiozzi G. Radziwill N. M., 91521C. 10.1117/12.2055836
Wilson O. C. (1978). Chromospheric Variations in Main-Sequence Stars. Astrophysical J. 226, 379–396. 10.1086/156618
Zito R. R. (1990). “Cleaning Large Optics with CO2 Snow,” in Advanced Technology Optical Telescopes IV. Vol. 1236 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Editor Barr L. D., 952–972. 10.1117/12.19176
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.