Snodgrassella; bumblebee; functional analysis; honeybee; metabolic modeling; metagenomics; microbiome; phylogenomics; species delineation; Computer Science Applications; Genetics; Molecular Biology; Modeling and Simulation; Ecology, Evolution, Behavior and Systematics; Biochemistry; Physiology; Microbiology
Abstract :
[en] Snodgrassella is a genus of Betaproteobacteria that lives in the gut of honeybees (Apis spp.) and bumblebees (Bombus spp). It is part of a conserved microbiome that is composed of a few core phylotypes and is essential for bee health and metabolism. Phylogenomic analyses using whole-genome sequences of 75 Snodgrassella strains from 4 species of honeybees and 14 species of bumblebees showed that these strains formed a monophyletic lineage within the Neisseriaceae family, that Snodgrassella isolates from Asian honeybees diverged early from the other species in their evolution, that isolates from honeybees and bumblebees were well separated, and that this genus consists of at least seven species. We propose to formally name two new Snodgrassella species that were isolated from bumblebees: i.e., Snodgrassella gandavensis sp. nov. and Snodgrassella communis sp. nov. Possible evolutionary scenarios for 107 species- or group-specific genes revealed very limited evidence for horizontal gene transfer. Functional analyses revealed the importance of small proteins, defense mechanisms, amino acid transport and metabolism, inorganic ion transport and metabolism and carbohydrate transport and metabolism among these 107 specific genes. IMPORTANCE The microbiome of honeybees (Apis spp.) and bumblebees (Bombus spp.) is highly conserved and represented by few phylotypes. This simplicity in taxon composition makes the bee's microbiome an emergent model organism for the study of gut microbial communities. Since the description of the Snodgrassella genus, which was isolated from the gut of honeybees and bumblebees in 2013, a single species (i.e., Snodgrassella alvi), has been named. Here, we demonstrate that this genus is actually composed of at least seven species, two of which (Snodgrassella gandavensis sp. nov. and Snodgrassella communis sp. nov.) are formally described and named in the present publication. We also report the presence of 107 genes specific to Snodgrassella species, showing notably the importance of small proteins and defense mechanisms in this genus.
Disciplines :
Biochemistry, biophysics & molecular biology Microbiology Genetics & genetic processes Entomology & pest control
Author, co-author :
Cornet, Luc ; Université de Liège - ULiège > Département des sciences de la vie > Phylogénomique des eucaryotes ; BCCM/IHEM, Mycology and Aerobiology, Sciensano, Brussels, Belgium
Cleenwerck, Ilse; Laboratory of Microbiology and BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent Universitygrid.5342.0, Ghent, Belgium
Praet, Jessy; Laboratory of Microbiology and BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent Universitygrid.5342.0, Ghent, Belgium
Engel P, Moran NA. 2013. Functional and evolutionary insights into the simple yet specific gut microbiota of the honeybee from metagenomic analysis. Gut Microbes 4:60–65. https://doi.org/10.4161/gmic.22517.
Kwong WK, Engel P, Koch H, Moran NA. 2014. Genomics and host specialization of honeybee and bumble bee gut symbionts. Proc Natl Acad Sci U S A 111:11509–11514. https://doi.org/10.1073/pnas.1405838111.
Zheng H, Perreau J, Powell JE, Han B, Zhang Z, Kwong WK, Tringe SG, Moran NA. 2019. Division of labor in honeybee gut microbiota for plant polysaccharide digestion. Proc Natl Acad Sci U S A 116:25909–25916. https://doi.org/10.1073/pnas.1916224116.
Billiet A, Meeus I, Nieuwerburgh FV, Deforce D, Wäckers F, Smagghe G. 2017. Colony contact contributes to the diversity of gut bacteria in bumblebees (Bombus terrestris). Insect Sci 24:270–277. https://doi.org/10.1111/1744-7917.12284.
Ellegaard KM, Brochet S, Bonilla-Rosso G, Emery O, Glover N, Hadadi N, Jaron KS, van der Meer JR, Robinson-Rechavi M, Sentchilo V, Tagini F, SAGE class 2016-17, Engel P. 2019. Genomic changes underlying host specialization in the bee gut symbiont Lactobacillus Firm5. Mol Ecol 28: 2224–2237. https://doi.org/10.1111/mec.15075.
Ellegaard KM, Engel P. 2018. New reference genome sequences for 17 bacterial strains of the honeybee gut microbiota. Microbiol Resour Announc 7:e00834-18. https://doi.org/10.1128/MRA.00834-18.
Guo J, Wu J, Chen Y, Evans JD, Dai R, Luo W, Li J. 2015. Characterization of gut bacteria at different developmental stages of Asian honeybees, Apis cerana. J Invertebr Pathol 127:110–114. https://doi.org/10.1016/j.jip.2015.03.010.
Hammer TJ, Le E, Moran NA. 2021. Thermal niches of specialized gut symbionts: the case of social bees. Proc Biol Sci 288:20201480. https://doi.org/10.1098/rspb.2020.1480.
Kwong WK, Moran NA. 2016. Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://doi.org/10.1038/nrmicro.2016.43.
Kwong WK, Medina LA, Koch H, Sing K-W, Soh EJY, Ascher JS, Jaffé R, Moran NA. 2017. Dynamic microbiome evolution in social bees. Sci Adv 3: e1600513. https://doi.org/10.1126/sciadv.1600513.
Martinson VG, Moy J, Moran NA. 2012. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 78:2830–2840. https://doi.org/10.1128/AEM.07810-11.
Meeus I, Parmentier L, Billiet A, Maebe K, Nieuwerburgh FV, Deforce D, Wäckers F, Vandamme P, Smagghe G. 2015. 16S rRNA amplicon sequencing demonstrates that indoor-reared bumblebees (Bombus terrestris) harbor a core subset of bacteria normally associated with the wild host. PLoS One 10:e0125152. https://doi.org/10.1371/journal.pone.0125152.
Moran NA, Hansen AK, Powell JE, Sabree ZL. 2012. Distinctive gut microbiota of honeybees assessed using deep sampling from individual worker bees. PLoS One 7:e36393. https://doi.org/10.1371/journal.pone.0036393.
Powell JE, Martinson VG, Urban-Mead K, Moran NA. 2014. Routes of acquisition of the gut microbiota of the honeybee Apis mellifera. Appl Environ Microbiol 80:7378–7387. https://doi.org/10.1128/AEM.01861-14.
Praet J, Parmentier A, Schmid-Hempel R, Meeus I, Smagghe G, Vandamme P. 2018. Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environ Microbiol 20:214–227. https://doi.org/10.1111/1462-2920.13973.
Sabree ZL, Hansen AK, Moran NA. 2012. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honeybees. PLoS One 7:e41250. https://doi.org/10.1371/journal.pone.0041250.
Tola YH, Waweru JW, Hurst GDD, Slippers B, Paredes JC. 2020. Characterization of the Kenyan honeybee (Apis mellifera) gut microbiota: a first look at tropical and sub-Saharan African bee associated microbiomes. Microorganisms 8:1721. https://doi.org/10.3390/microorganisms8111721.
Zheng H, Steele MI, Leonard SP, Motta EVS, Moran NA. 2018. Honeybees as models for gut microbiota research. Lab Anim (NY) 47:317–325. https://doi.org/10.1038/s41684-018-0173-x.
Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA. 2011. A simple and distinctive microbiota associated with honeybees and bumble bees. Mol Ecol 20:619–628. https://doi.org/10.1111/j.1365-294X.2010.04959.x.
Zhang Z-J, Huang M-F, Qiu L-F, Song R-H, Zhang Z-X, Ding Y-W, Zhou X, Zhang X, Zheng H. 2021. Diversity and functional analysis of Chinese bumblebee gut microbiota reveal the metabolic niche and antibiotic resistance variation of Gilliamella. Insect Sci 28:302–314. https://doi.org/10.1111/1744-7917.12770.
Kwong WK, Moran NA. 2013. Cultivation and characterization of the gut symbionts of honeybees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order “Enterobacteriales” of the Gammaproteobacteria. Int J Syst Evol Microbiol 63: 2008–2018. https://doi.org/10.1099/ijs.0.044875-0.
Engel P, Stepanauskas R, Moran NA. 2014. Hidden diversity in honeybee gut symbionts detected by single-cell genomics. PLoS Genet 10: e1004596. https://doi.org/10.1371/journal.pgen.1004596.
Bosmans L, Pozo MI, Verreth C, Crauwels S, Wilberts L, Sobhy IS, Wäckers F, Jacquemyn H, Lievens B. 2018. Habitat-specific variation in gut microbial communities and pathogen prevalence in bumblebee queens (Bombus terrestris). PLoS One 13:e0204612. https://doi.org/10.1371/journal.pone.0204612.
Horak RD, Leonard SP, Moran NA. 2020. Symbionts shape host innate immunity in honeybees. Proc Biol Sci 287:20201184. https://doi.org/10.1098/rspb.2020.1184.
Maes PW, Rodrigues PAP, Oliver R, Mott BM, Anderson KE. 2016. Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol Ecol 25:5439–5450. https://doi.org/10.1111/mec.13862.
Rothman JA, Leger L, Graystock P, Russell K, McFrederick QS. 2019. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ Microbiol 21:3417–3429. https://doi.org/10.1111/1462-2920.14641.
Sauers LA, Sadd BM. 2019. An interaction between host and microbe genotypes determines colonization success of a key bumble bee gut microbiota member. Evolution 73:2333–2342. https://doi.org/10.1111/evo.13853.
Michez D, Rasmont P, Terzo M, Vereeckn NJ. 2019. Bees of Europe—Hymenoptera of Europe, vol 1. NAP Editions, Verrieres le Buisson, France.
Maebe K, Vereecken NJ, Piot N, Reverté S, Cejas D, Michez D, Vandamme P, Smagghe G. 2021. The holobiont as a key to the adaptation and conservation of wild bees in the Anthropocene. Front Ecol Evol 9:849. https://doi.org/10.3389/fevo.2021.781470.
Moran NA. 2015. Genomics of the honeybee microbiome. Curr Opin Insect Sci 10:22–28. https://doi.org/10.1016/j.cois.2015.04.003.
Ludvigsen J, Amdam GV, Rudi K, L'Abée-Lund TM. 2018. Detection and characterization of streptomycin resistance (strA-strB) in a honeybee gut symbiont (Snodgrassella alvi) and the associated risk of antibiotic resistance transfer. Microb Ecol 76:588–591. https://doi.org/10.1007/s00248-018-1171-7.
Kwong WK, Moran NA. 2015. Evolution of host specialization in gut microbes: the bee gut as a model. Gut Microbes 6:214–220. https://doi.org/10.1080/19490976.2015.1047129.
Steele MI, Kwong WK, Whiteley M, Moran NA. 2017. Diversification of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. mBio 8:e01630-17. https://doi.org/10.1128/mBio.01630-17.
Steele MI, Moran NA. 2021. Evolution of interbacterial antagonism in bee gut microbiota reflects host and symbiont diversification. mSystems 6: e00063-21. https://doi.org/10.1128/mSystems.00063-21.
Koch H, Abrol DP, Li J, Schmid-Hempel P. 2013. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol 22: 2028–2044. https://doi.org/10.1111/mec.12209.
Galtier N. 2007. A model of horizontal gene transfer and the bacterial phylogeny problem. Syst Biol 56:633–642. https://doi.org/10.1080/10635150701546231.
Gribaldo S, Brochier C. 2009. Phylogeny of prokaryotes: does it exist and why should we care? Res Microbiol 160:513–521. https://doi.org/10.1016/j.resmic.2009.07.006.
Stanhope MJ, Lupas A, Italia MJ, Koretke KK, Volker C, Brown JR. 2001. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411:940–944. https://doi.org/10.1038/35082058.
Siu-Ting K, Torres-Sánchez M, San Mauro D, Wilcockson D, Wilkinson M, Pisani D, O'Connell MJ, Creevey CJ. 2019. Inadvertent paralog inclusion drives artifactual topologies and timetree estimates in phylogenomics. Mol Biol Evol 36:1344–1356. https://doi.org/10.1093/molbev/msz067.
Struck TH. 2013. The impact of paralogy on phylogenomic studies—a case study on annelid relationships. PLoS One 8:e62892. https://doi.org/10.1371/journal.pone.0062892.
Li Y, Xue H, Sang S, Lin C, Wang X. 2017. Phylogenetic analysis of family Neisseriaceae based on genome sequences and description of Populibacter corticis gen. nov., sp. nov., a member of the family Neisseriaceae, isolated from symptomatic bark of Populus × euramericana canker. PLoS One 12:e0174506. https://doi.org/10.1371/journal.pone.0174506.
Powell E, Ratnayeke N, Moran NA. 2016. Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees. Mol Ecol 25:4461–4471. https://doi.org/10.1111/mec.13787.
Olm MR, Brown CT, Brooks B, Banfield JF. 2017. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11:2864–2868. https://doi.org/10.1038/ismej.2017.126.
Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer PY. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266. https://doi.org/10.1099/ijs.0.016949-0.
Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JMY. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0.
Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131. https://doi.org/10.1073/pnas.0906412106.
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P. 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36: 996–1004. https://doi.org/10.1038/nbt.4229.
Dong Z-X, Li H-Y, Chen Y-F, Wang F, Deng X-Y, Lin L-B, Zhang Q-L, Li J-L, Guo J. 2020. Colonization of the gut microbiota of honeybee (Apis mellifera) workers at different developmental stages. Microbiol Res 231: 126370. https://doi.org/10.1016/j.micres.2019.126370.
Dehon M, Engel MS, Gérard M, Aytekin AM, Ghisbain G, Williams PH, Rasmont P, Michez D. 2019. Morphometric analysis of fossil bumble bees (Hymenoptera, Apidae, Bombini) reveals their taxonomic affinities. Zoo-keys 891:71–118. https://doi.org/10.3897/zookeys.891.36027.
Hines HM. 2008. Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Syst Biol 57:58–75. https://doi.org/10.1080/10635150801898912.
Williams PH, Huang J, Rasmont P, An J. 2016. Early-diverging bumblebees from across the roof of the world: the high-mountain subgenus Mendacibombus revised from species’ gene coalescents and morphology (Hymenoptera, Apidae). Zootaxa 4204:1–72. https://doi.org/10.11646/zootaxa.4204.1.1.
Cardinal S, Straka J, Danforth BN. 2010. Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism. Proc Natl Acad Sci U S A 107:16207–16211. https://doi.org/10.1073/pnas.1006299107.
Queirós P, Delogu F, Hickl O, May P, Wilmes P. 2021. Mantis: flexible and consensus-driven genome annotation. GigaScience 10:giab042. https://doi.org/10.1093/gigascience/giab042.
Storz G, Wolf YI, Ramamurthi KS. 2014. Small proteins can no longer be ignored. Annu Rev Biochem 83:753–777. https://doi.org/10.1146/annurev -biochem-070611-102400.
Lluch-Senar M, Delgado J, Chen W-H, Lloréns-Rico V, O'Reilly FJ, Wodke JA, Unal EB, Yus E, Martínez S, Nichols RJ, Ferrar T, Vivancos A, Schmeisky A, Stülke J, Noort V, Gavin A-C, Bork P, Serrano L. 2015. Defining a minimal cell: essentiality of small ORFs and ncRNAs in a genome-reduced bacterium. Mol Syst Biol 11:780. https://doi.org/10.15252/msb.20145558.
Duval M, Cossart P. 2017. Small bacterial and phagic proteins: an updated view on a rapidly moving field. Curr Opin Microbiol 39:81–88. https://doi.org/10.1016/j.mib.2017.09.010.
Thomas AM, Segata N. 2019. Multiple levels of the unknown in microbiome research. BMC Biol 17:48. https://doi.org/10.1186/s12915-019-0667-z.
UniProt Consortium. 2021. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–D489. https://doi.org/10.1093/nar/ gkaa1100.
Powell JE, Leonard SP, Kwong WK, Engel P, Moran NA. 2016. Genome-wide screen identifies host colonization determinants in a bacterial gut symbiont. Proc Natl Acad Sci U S A 113:13887–13892. https://doi.org/10.1073/pnas.1610856113.
Song W, Wemheuer B, Zhang S, Steensen K, Thomas T. 2019. MetaCHIP: community-level horizontal gene transfer identification through the combination of best-match and phylogenetic approaches. Microbiome 7:36. https://doi.org/10.1186/s40168-019-0649-y.
Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O'Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH, Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY, Marchler-Bauer A, Pruitt KD. 2018. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–D860. https://doi.org/10.1093/nar/gkx1068.
Nasko DJ, Koren S, Phillippy AM, Treangen TJ. 2018. RefSeq database growth influences the accuracy of k-mer-based lowest common ancestor species identification. Genome Biol 19:165. https://doi.org/10.1186/s13059 -018-1554-6.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114.
Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.
Léonard RR, Leleu M, Vlierberghe MV, Kerff F, Baurain D. 2020. ToRQuEMaDA: Tool for Retrieving Queried Eubacteria, Metadata and Dereplicating Assemblies. bioRxiv 2020.11.15.363259. https://www.biorxiv.org/content/10.1101/2020.11.15.363259v1.full.pdf.
Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO. 2015. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3:e1319. https://doi.org/10.7717/peerj.1319.
Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36. https://doi.org/10.1093/nar/28.1.33.
Criscuolo A, Gribaldo S. 2010. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 10:210. https://doi.org/10.1186/ 1471-2148-10-210.
Roure B, Rodriguez-Ezpeleta N, Philippe H. 2007. SCaFoS: a tool for Selection, Concatenation and Fusion of Sequences for phylogenomics. BMC Evol Biol 7:S2. https://doi.org/10.1186/1471-2148-7-S1-S2.
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. https://doi.org/10.1093/bioinformatics/btl446.
Felsenstein J. 2004. PHYLIP (Phylogeny Inference Package) version 3.6. https://evolution.genetics.washington.edu/phylip.html.
Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010.
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. https://doi.org/10.1038/s41467 -018-07641-9.
Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire J-Y, Kupfer A, Petersen J, Jarek M, Meyer A, Vences M, Philippe H. 2017. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat Ecol Evol 1:1370–1378. https://doi.org/10.1038/s41559-017-0240-5.
Simion P, Philippe H, Baurain D, Jager M, Richter DJ, Di Franco A, Roure B, Satoh N, Quéinnec É, Ereskovsky A, Lapébie P, Corre E, Delsuc F, King N, Wörheide G, Manuel M. 2017. A large and consistent phylogenomic data-set supports sponges as the sister group to all other animals. Curr Biol 27: 958–967. https://doi.org/10.1016/j.cub.2017.02.031.
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2019. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36:1925–1927. https://doi.org/10.1093/bioinformatics/btz848.