[en] Treatment of heart failure with the angiotensin receptor-neprilysin inhibitor sacubitril/valsartan improved glycemic control in individuals with type 2 diabetes. The relative contribution of neprilysin inhibition versus angiotensin II receptor antagonism to this glycemic benefit remains unknown. Thus, we sought to determine the relative effects of the neprilysin inhibitor sacubitril versus the angiotensin II receptor blocker valsartan on beta-cell function and glucose homeostasis in a mouse model of reduced first-phase insulin secretion, and whether any beneficial effects are additive/synergistic when combined in sacubitril/valsartan. High fat-fed C57BL/6J mice treated with low-dose streptozotocin (or vehicle) were followed for eight weeks on high fat diet alone or supplemented with sacubitril, valsartan or sacubitril/valsartan. Body weight and fed glucose levels were assessed weekly. At the end of the treatment period, insulin release in response to intravenous glucose, insulin sensitivity, and beta-cell mass were determined. Sacubitril and valsartan, but not sacubitril/valsartan, lowered fasting and fed glucose levels and increased insulin release in diabetic mice. None of the drugs altered insulin sensitivity or beta-cell mass, but all reduced body weight gain. Effects of the drugs on insulin release were reproduced in angiotensin II-treated islets from lean C57BL/6J mice, suggesting the insulin response to each of the drugs is due to a direct effect on islets and mechanisms therein. In summary, sacubitril and valsartan each exert beneficial insulinotropic, glycemic and weight-reducing effects in obese and/or diabetic mice when administered alone; however, when combined, mechanisms within the islet contribute to their inability to enhance insulin release.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Esser, Nathalie ; Centre Hospitalier Universitaire de Liège - CHU > > Service de diabétologie, nutrition, maladies métaboliques ; Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States ; Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
Schmidt, Christine; Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
Barrow, Breanne M; Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
Cronic, Laura; Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
Hackney, Daryl J; Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
Mongovin, Stephen M; Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
Hogan, Meghan F; Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States ; Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
Templin, Andrew T; Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States ; Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
Castillo, Joseph J; Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States ; Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
Hull, Rebecca L; Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States ; Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
Zraika, Sakeneh; Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States ; Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
Language :
English
Title :
Insulinotropic Effects of Neprilysin and/or Angiotensin Receptor Inhibition in Mice.
Novartis NIH - National Institutes of Health United States Department of Veterans Affairs UW - University of Washington SFD - Société Francophone du Diabète BAEF - Belgian American Educational Foundation Fonds Baillet Latour Fonds Léon Fredericq
Hubers SA Brown NJ. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition. Circulation (2016) 133(11):1115–24. doi: 10.1161/CIRCULATIONAHA.115.018622
Seferovic JP Claggett B Seidelmann SB Seely EW Packer M Zile MR et al. Effect of Sacubitril/Valsartan Versus Enalapril on Glycaemic Control in Patients With Heart Failure and Diabetes: A Post-Hoc Analysis From the PARADIGM-HF Trial. Lancet Diabetes Endocrinol (2017) 5(5):333–40. doi: 10.1016/S2213-8587(17)30087-6
Nougue H Pezel T Picard F Sadoune M Arrigo M Beauvais F et al. Effects of Sacubitril/Valsartan on Neprilysin Targets and the Metabolism of Natriuretic Peptides in Chronic Heart Failure: A Mechanistic Clinical Study. Eur J Heart Fail (2019) 21(5):598–605. doi: 10.1002/ejhf.1342
Jordan J Stinkens R Jax T Engeli S Blaak EE May M et al. Improved Insulin Sensitivity With Angiotensin Receptor Neprilysin Inhibition in Individuals With Obesity and Hypertension. Clin Pharmacol Ther (2017) 101(2):254–63. doi: 10.1002/cpt.455
Esser N Zraika S. Neprilysin Inhibition: A New Therapeutic Option for Type 2 Diabetes? Diabetologia (2019) 62(7):1113–22. doi: 10.1007/s00125-019-4889-y
Roques BP Noble F Dauge V Fournie-Zaluski MC Beaumont A. Neutral Endopeptidase 24.11: Structure, Inhibition, and Experimental and Clinical Pharmacology. Pharmacol Rev (1993) 45(1):87–146.
Zraika S Hull RL Udayasankar J Clark A Utzschneider KM Tong J et al. Identification of the Amyloid-Degrading Enzyme Neprilysin in Mouse Islets and Potential Role in Islet Amyloidogenesis. Diabetes (2007) 56(2):304–10. doi: 10.2337/db06-0430
Zraika S Koh DS Barrow BM Lu B Kahn SE Andrikopoulos S. Neprilysin Deficiency Protects Against Fat-Induced Insulin Secretory Dysfunction by Maintaining Calcium Influx. Diabetes (2013) 62(5):1593–601. doi: 10.2337/db11-1593
Esser N Barrow BM Choung E Shen NJ Zraika S. Neprilysin Inhibition in Mouse Islets Enhances Insulin Secretion in a GLP-1 Receptor Dependent Manner. Islets (2018) 10(5):175–80. doi: 10.1080/19382014.2018.1502521
Standeven KF Hess K Carter AM Rice GI Cordell PA Balmforth AJ et al. Neprilysin, Obesity and the Metabolic Syndrome. Int J Obes (Lond) (2011) 35(8):1031–40. doi: 10.1038/ijo.2010.227
Willard JR Barrow BM Zraika S. Improved Glycaemia in High-Fat-Fed Neprilysin-Deficient Mice is Associated With Reduced DPP-4 Activity and Increased Active GLP-1 Levels. Diabetologia (2017) 60(4):701–8. doi: 10.1007/s00125-016-4172-4
Chipkin RE Kreutner W Billard W. Potentiation of the Hypoglycemic Effect of Insulin by Thiorphan, an Enkephalinase Inhibitor. Eur J Pharmacol (1984) 102(1):151–4. doi: 10.1016/0014-2999(84)90349-2
Arbin V Claperon N Fournie-Zaluski MC Roques BP Peyroux J. Acute Effect of the Dual Angiotensin-Converting Enzyme and Neutral Endopeptidase 24-11 Inhibitor Mixanpril on Insulin Sensitivity in Obese Zucker Rat. Br J Pharmacol (2001) 133(4):495–502. doi: 10.1038/sj.bjp.0704098
Plamboeck A Holst JJ Carr RD Deacon CF. Neutral Endopeptidase 24.11 and Dipeptidyl Peptidase IV are Both Mediators of the Degradation of Glucagon-Like Peptide 1 in the Anaesthetised Pig. Diabetologia (2005) 48(9):1882–90. doi: 10.1007/s00125-005-1847-7
Wu HT Chang CK Cheng KC Chang CH Yeh CH Cheng JT. Increase of Plasma Insulin by Racecadotril, an Inhibitor of Enkephalinase, in Wistar Rats. Horm Metab Res (2010) 42(4):261–7. doi: 10.1055/s-0029-1246190
Esser N Mongovin SM Parilla J Barrow BM Mundinger TO Fountaine BS et al. Neprilysin Inhibition Improves Intravenous But Not Oral Glucose-Mediated Insulin Secretion Via GLP-1R Signaling in Mice With β-Cell Dysfunction. Am J Physiol Endocrinol Metab (2022) 322(3):E307–e18. doi: 10.1152/ajpendo.00234.2021
Underwood PC Adler GK. The Renin Angiotensin Aldosterone System and Insulin Resistance in Humans. Curr Hypertens Rep (2013) 15(1):59–70. doi: 10.1007/s11906-012-0323-2
Abuissa H Jones PG Marso SP O’Keefe JH Jr. Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Blockers for Prevention of Type 2 Diabetes: A Meta-Analysis of Randomized Clinical Trials. J Am Coll Cardiol (2005) 46(5):821–6. doi: 10.1016/j.jacc.2005.05.051
Fogari R Preti P Zoppi A Mugellini A Corradi L Lazzari P et al. Effect of Valsartan Addition to Amlodipine on Insulin Sensitivity in Overweight-Obese Hypertensive Patients. Intern Med (2008) 47(21):1851–7. doi: 10.2169/internalmedicine.47.1427
van der Zijl NJ Moors CC Goossens GH Hermans MM Blaak EE Diamant M. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism: A Randomized Controlled Trial. Diabetes Care (2011) 34(4):845–51. doi: 10.2337/dc10-2224
McMurray JJ Holman RR Haffner SM Bethel MA Holzhauer B Hua TA et al. Effect of Valsartan on the Incidence of Diabetes and Cardiovascular Events. N Engl J Med (2010) 362(16):1477–90. doi: 10.1056/NEJMoa1001121
Rice GI Thomas DA Grant PJ Turner AJ Hooper NM. Evaluation of Angiotensin-Converting Enzyme (ACE), its Homologue ACE2 and Neprilysin in Angiotensin Peptide Metabolism. Biochem J (2004) 3831):45–51. doi: 10.1042/BJ20040634
Mu J Woods J Zhou YP Roy RS Li Z Zycband E et al. Chronic Inhibition of Dipeptidyl Peptidase-4 With a Sitagliptin Analog Preserves Pancreatic Beta-Cell Mass and Function in a Rodent Model of Type 2 Diabetes. Diabetes (2006) 55(6):1695–704. doi: 10.2337/db05-1602
Parilla JH Willard JR Barrow BM Zraika S. A Mouse Model of Beta-Cell Dysfunction as Seen in Human Type 2 Diabetes. J Diabetes Res (2018) 2018:6106051. doi: 10.1155/2018/6106051
Schiering N D’Arcy A Villard F Ramage P Logel C Cumin F et al. Structure of Neprilysin in Complex With the Active Metabolite of Sacubitril. Sci Rep (2016) 6:27909. doi: 10.1038/srep27909
Bonner-Weir S Deery D Leahy JL Weir GC. Compensatory Growth of Pancreatic Beta-Cells in Adult Rats After Short-Term Glucose Infusion. Diabetes (1989) 38(1):49–53. doi: 10.2337/diab.38.1.49
Golson ML Bush WS Brissova M. Automated Quantification of Pancreatic β-Cell Mass. Am J Physiol Endocrinol Metab (2014) 306(12):E1460–7. doi: 10.1152/ajpendo.00591.2013
McCulloch DK Koerker DJ Kahn SE Bonner-Weir S Palmer JP. Correlations of In Vivo Beta-Cell Function Tests With Beta-Cell Mass and Pancreatic Insulin Content in Streptozocin-Administered Baboons. Diabetes (1991) 40(6):673–9. doi: 10.2337/diab.40.6.673
Montaña E Bonner-Weir S Weir GC. Transplanted Beta Cell Response to Increased Metabolic Demand. Changes in Beta Cell Replication and Mass. J Clin Invest (1994) 93(4):1577–82. doi: 10.1172/JCI117137
Yin D Tao J Lee DD Shen J Hara M Lopez J et al. Recovery of Islet Beta-Cell Function in Streptozotocin- Induced Diabetic Mice: An Indirect Role for the Spleen. Diabetes (2006) 55(12):3256–63. doi: 10.2337/db05-1275
Lau T Carlsson PO Leung PS. Evidence for a Local Angiotensin-Generating System and Dose-Dependent Inhibition of Glucose-Stimulated Insulin Release by Angiotensin II in Isolated Pancreatic Islets. Diabetologia (2004) 47(2):240–8. doi: 10.1007/s00125-003-1295-1
Chu KY Lau T Carlsson PO Leung PS. Angiotensin II Type 1 Receptor Blockade Improves Beta-Cell Function and Glucose Tolerance in a Mouse Model of Type 2 Diabetes. Diabetes (2006) 55(2):367–74. doi: 10.2337/diabetes.55.02.06.db05-1022
He H Yang D Ma L Luo Z Ma S Feng X et al. Telmisartan Prevents Weight Gain and Obesity Through Activation of Peroxisome Proliferator-Activated Receptor-Delta-Dependent Pathways. Hypertension (2010) 55(4):869–79. doi: 10.1161/HYPERTENSIONAHA.109.143958
Moro C. Targeting Cardiac Natriuretic Peptides in the Therapy of Diabetes and Obesity. Expert Opin Ther Targets (2016) 20(12):1445–52. doi: 10.1080/14728222.2016.1254198
Hupe-Sodmann K McGregor GP Bridenbaugh R Goke R Goke B Thole H et al. Characterisation of the Processing by Human Neutral Endopeptidase 24.11 of GLP-1(7-36) Amide and Comparison of the Substrate Specificity of the Enzyme for Other Glucagon-Like Peptides. Regul Pept (1995) 58(3):149–56. doi: 10.1016/0167-0115(95)00063-h
Windelov JA Wewer Albrechtsen NJ Kuhre RE Jepsen SL Hornburg D Pedersen J et al. Why is it So Difficult to Measure Glucagon-Like Peptide-1 in a Mouse? Diabetologia (2017) 60(10):2066–75. doi: 10.1007/s00125-017-4347-7
Wewer Albrechtsen NJ Mark PD Terzic D Hansen LH Andersen UO Hartmann B et al. Sacubitril/Valsartan Augments Postprandial Plasma Concentrations of Active GLP-1 When Combined With Sitagliptin in Men. J Clin Endocrinol Metab (2019) 104(9):3868–76. doi: 10.1210/jc.2019-00515
Medeiros MD Turner AJ. Processing and Metabolism of peptide-YY: Pivotal Roles of dipeptidylpeptidase-IV, aminopeptidase-P, and Endopeptidase-24.11. Endocrinology (1994) 134(5):2088–94. doi: 10.1210/endo.134.5.7908871
Deschodt-Lanckman M Strosberg AD. In Vitro Degradation of the C-terminal Octapeptide of Cholecystokinin by ‘Enkephalinase A’. FEBS Lett (1983) 152(1):109–13. doi: 10.1016/0014-5793(83)80493-1
Deschodt-Lanckman M Pauwels S Najdovski T Dimaline R Dockray GJ. In Vitro and In Vivo Degradation of Human Gastrin by Endopeptidase 24.11. Gastroenterology (1988) 94:712–21. doi: 10.1016/0016-5085(88)90244-2
Cole BK Keller SR Wu R Carter JD Nadler JL Nunemaker CS. Valsartan Protects Pancreatic Islets and Adipose Tissue From the Inflammatory and Metabolic Consequences of a High-Fat Diet in Mice. Hypertension (2010) 55(3):715–21. doi: 10.1161/HYPERTENSIONAHA.109.148049
Carlsson PO Berne C Jansson L. Angiotensin II and the Endocrine Pancreas: Effects on Islet Blood Flow and Insulin Secretion in Rats. Diabetologia (1998) 41(2):127–33. doi: 10.1007/s001250050880
Huang Z Jansson L Sjöholm A. Vasoactive Drugs Enhance Pancreatic Islet Blood Flow, Augment Insulin Secretion and Improve Glucose Tolerance in Female Rats. Clin Sci (Lond) (2007) 112(1):69–76. doi: 10.1042/CS20060176
Zhang Z Liu C Gan Z Wang X Yi Q Liu Y et al. Improved Glucose-Stimulated Insulin Secretion by Selective Intraislet Inhibition of Angiotensin Ii Type 1 Receptor Expression in Isolated Islets of Db/Db Mice. Int J Endocrinol (2013) 2013:319586. doi: 10.1155/2013/319586
Ferrario CM Jessup J Gallagher PE Averill DB Brosnihan KB Ann Tallant E et al. Effects of Renin-Angiotensin System Blockade on Renal Angiotensin-(1-7) Forming Enzymes and Receptors. Kidney Int (2005) 68(5):2189–96. doi: 10.1111/j.1523-1755.2005.00675.x
Ferrario CM Jessup J Chappell MC Averill DB Brosnihan KB Tallant EA et al. Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac Angiotensin-Converting Enzyme 2. Circulation (2005) 111(20):2605–10. doi: 10.1161/CIRCULATIONAHA.104.510461
Bindom SM Lazartigues E. The Sweeter Side of ACE2: Physiological Evidence for a Role in Diabetes. Mol Cell Endocrinol (2009) 302(2):193–202. doi: 10.1016/j.mce.2008.09.020
Tikellis C Wookey PJ Candido R Andrikopoulos S Thomas MC Cooper ME. Improved Islet Morphology After Blockade of the Renin- Angiotensin System in the ZDF Rat. Diabetes (2004) 53(4):989–97. doi: 10.2337/diabetes.53.4.989
Chu KY Leung PS. Angiotensin II Type 1 Receptor Antagonism Mediates Uncoupling Protein 2-Driven Oxidative Stress and Ameliorates Pancreatic Islet Beta-Cell Function in Young Type 2 Diabetic Mice. Antioxid Redox Signal (2007) 9(7):869–78. doi: 10.1089/ars.2007.1590
Lupi R Del Guerra S Bugliani M Boggi U Mosca F Torri S et al. The Direct Effects of the Angiotensin-Converting Enzyme Inhibitors, Zofenoprilat and Enalaprilat, on Isolated Human Pancreatic Islets. Eur J Endocrinol (2006) 154(2):355–61. doi: 10.1530/eje.1.02086
Sauter NS Thienel C Plutino Y Kampe K Dror E Traub S et al. Angiotensin II Induces interleukin-1beta-mediated Islet Inflammation and Beta-Cell Dysfunction Independently of Vasoconstrictive Effects. Diabetes (2015) 64(4):1273–83. doi: 10.2337/db14-1282
Pais R Rievaj J Larraufie P Gribble F Reimann F. Angiotensin II Type 1 Receptor-Dependent GLP-1 and PYY Secretion in Mice and Humans. Endocrinology (2016) 157(10):3821–31. doi: 10.1210/en.2016-1384
Esser N Zraika S. Neprilysin Inhibitors and Angiotensin(1-7) in COVID-19. Br J Cardiol (2020) 27(4):109–11. doi: 10.5837/bjc.2020.031
Schindler C Brosnihan KB Ferrario CM Bramlage P Maywald U Koch R et al. Comparison of Inhibitory Effects of Irbesartan and Atorvastatin Treatment on the Renin Angiotensin System (RAS) in Veins: A Randomized Double-Blind Crossover Trial in Healthy Subjects. J Clin Pharmacol (2007) 47(1):112–20. doi: 10.1177/0091270006294280
Zhao S Sun W Jiang P. Role of the ACE2/Ang-(1-7)/Mas Axis in Glucose Metabolism. Rev Cardiovasc Med (2021) 22(3):769–77. doi: 10.31083/j.rcm2203083
Brar GS Barrow BM Watson M Griesbach R Choung E Welch A et al. Neprilysin Is Required for Angiotensin-(1-7)’s Ability to Enhance Insulin Secretion Via Its Proteolytic Activity to Generate Angiotensin-(1-2). Diabetes (2017) 66(8):2201–12. doi: 10.2337/db16-1318
Gamboa JL Pretorius M Todd-Tzanetos DR Luther JM Yu C Ikizler TA et al. Comparative Effects of Angiotensin-Converting Enzyme Inhibition and Angiotensin-Receptor Blockade on Inflammation During Hemodialysis. J Am Soc Nephrol (2012) 23(2):334–42. doi: 10.1681/ASN.2011030287
Lafferty RA Flatt PR Irwin N. C-Terminal Degradation of PYY Peptides in Plasma Abolishes Effects on Satiety and Beta-Cell Function. Biochem Pharmacol (2018) 158:95–102. doi: 10.1016/j.bcp.2018.10.004
Lafferty RA Tanday N McCloskey A Bompada P De Marinis Y Flatt PR et al. Peptide YY (1-36) Peptides From Phylogenetically Ancient Fish Targeting Mammalian Neuropeptide Y1 Receptors Demonstrate Potent Effects on Pancreatic β-Cell Function, Growth and Survival. Diabetes Obes Metab (2020) 22(3):404–16. doi: 10.1111/dom.13908
Dubreuil P Fulcrand P Rodriguez M Fulcrand H Laur J Martinez J. Novel Activity of Angiotensin-Converting Enzyme. Hydrolysis of Cholecystokinin and Gastrin Analogues With Release of the Amidated C-terminal Dipeptide. Biochem J (1989) 262(1):125–30. doi: 10.1042/bj2620125
Andersen UO Terzic D Wewer Albrechtsen NJ Dall Mark P Plomgaard P Rehfeld JF et al. Sacubitril/Valsartan Increases Postprandial Gastrin and Cholecystokinin in Plasma. Endocr Connect (2020) 9(5):438–44. doi: 10.1530/EC-19-0563
Kannel WB Hjortland M Castelli WP. Role of Diabetes in Congestive Heart Failure: The Framingham Study. Am J Cardiol (1974) 34(1):29–34. doi: 10.1016/0002-9149(74)90089-7
Nichols GA Gullion CM Koro CE Ephross SA Brown JB. The Incidence of Congestive Heart Failure in Type 2 Diabetes: An Update. Diabetes Care (2004) 27(8):1879–84. doi: 10.2337/diacare.27.8.1879
Tenenbaum A Motro M Fisman EZ Leor J Freimark D Boyko V et al. Functional Class in Patients With Heart Failure is Associated With the Development of Diabetes. Am J Med (2003) 114(4):271–5. doi: 10.1016/S0002-9343(02)01530-9
Uriel N Naka Y Colombo PC Farr M Pak SW Cotarlan V et al. Improved Diabetic Control in Advanced Heart Failure Patients Treated With Left Ventricular Assist Devices. Eur J Heart Fail (2011) 13(2):195–9. doi: 10.1093/eurjhf/hfq204
Riehle C Abel ED. Insulin Signaling and Heart Failure. Circ Res (2016) 118(7):1151–69. doi: 10.1161/CIRCRESAHA.116.306206
Floras JS Ponikowski P. The Sympathetic/Parasympathetic Imbalance in Heart Failure With Reduced Ejection Fraction. Eur Heart J (2015) 36(30):1974–82b. doi: 10.1093/eurheartj/ehv087
Nonogaki K. New Insights Into Sympathetic Regulation of Glucose and Fat Metabolism. Diabetologia (2000) 43(5):533–49. doi: 10.1007/s001250051341
Kjeldsen SAS Hansen LH Esser N Mongovin S Winther-Sørensen M Galsgaard KD et al. Neprilysin Inhibition Increases Glucagon Levels in Humans and Mice With Potential Effects on Amino Acid Metabolism. J Endocr Soc (2021) 5(9):bvab084. doi: 10.1210/jendso/bvab084
Di Filippo C Lampa E Tufariello E Petronella P Freda F Capuano A et al. Effects of Irbesartan on the Growth and Differentiation of Adipocytes in Obese Zucker Rats. Obes Res (2005) 13(11):1909–14. doi: 10.1038/oby.2005.235
Araki K Masaki T Katsuragi I Tanaka K Kakuma T Yoshimatsu H. Telmisartan Prevents Obesity and Increases the Expression of Uncoupling Protein 1 in Diet-Induced Obese Mice. Hypertension (2006) 48(1):51–7. doi: 10.1161/01.HYP.0000225402.69580.1d