[en] Two-dimensional channel flow simulations of FENE-P (finitely extensible nonlinear elastic-Peterlin) fluid in the elasto-inertial turbulence (EIT) regime reveal distinct regimes ranging from chaos to a steady traveling wave which takes the form of an arrowhead structure. This coherent structure provides insights into the polymer/flow interactions driving EIT. A set of controlled numerical experiments and the study of transfer between elastic and turbulent kinetic energies highlight the role of small- and large-scale dynamics in the self-sustaining cycle of chaos in EIT flows.
Disciplines :
Mechanical engineering
Author, co-author :
Dubief, Yves
Page, Jacob; University of Edinburgh [UK] > School of Mathematics
Kerswell, Richard R.; University of Cambridge [UK] > Applied Mathematics and Theoretical Physics
Terrapon, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Modélisation et contrôle des écoulements turbulents
Steinberg, Victor; Weizmann Institute of Science > Physics of Complex Systems
Language :
English
Title :
First coherent structure in elasto-inertial turbulence
Publication date :
01 July 2022
Journal title :
Physical Review Fluids
ISSN :
2469-9918
eISSN :
2469-990X
Publisher :
American Physical Society, College Park, United States - Maryland
D. Samanta, Y. Dubief, M. Holzner, C. Schäfer, A. N. Morozov, C. Wagner, and B. Hof, Elasto-inertial turbulence, Proc. Natl. Acad. Sci. USA 110, 10557 (2013) 0027-8424 10.1073/pnas.1219666110.
Y. Dubief, V. E. Terrapon, and J. Soria, On the mechanism of elasto-inertial turbulence, Phys. Fluids 25, 110817 (2013) 1070-6631 10.1063/1.4820142.
H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E. Goldstein, H. Löwen, and J. M. Yeomans, Meso-scale turbulence in living fluids, Proc. Natl. Acad. Sci. USA 109, 14308 (2012) 0027-8424 10.1073/pnas.1202032109.
R. Alert, J.-F. Joanny, and J. Casademunt, Universal scaling of active nematic turbulence, Nat. Phys. 16, 682 (2020) 10.1038/s41567-020-0854-4.
A. Groisman and V. Steinberg, Elastic turbulence in a polymer solution flow, Nature (London) 405, 53 (2000) 0028-0836 10.1038/35011019.
A. Groisman and V. Steinberg, Efficient mixing at low Reynolds numbers using polymer additives, Nature (London) 410, 905 (2001) 0028-0836 10.1038/35073524.
B. Traore, C. Castelain, and T. Burghelea, Efficient heat transfer in a regime of elastic turbulence, J. Non-Newtonian Fluid Mech. 223, 62 (2015) 0377-0257 10.1016/j.jnnfm.2015.05.005.
R. Whalley, W. Abed, D. Dennis, and R. Poole, Enhancing heat transfer at the micro-scale using elastic turbulence, Theor. Appl. Mech. Lett. 5, 103 (2015) 2095-0349 10.1016/j.taml.2015.03.006.
R. Poole, B. Budhiraja, A. Cain, and P. Scott, Emulsification using elastic turbulence, J. Non-Newtonian Fluid Mech. 177-178, 15 (2012) 0377-0257 10.1016/j.jnnfm.2012.03.012.
S. Sid, V. E. Terrapon, and Y. Dubief, Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction, Phys. Rev. Fluids 3, 011301 (R) (2018) 2469-990X 10.1103/PhysRevFluids.3.011301.
S. K. Robinson, Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech. 23, 601 (1991) 0066-4189 10.1146/annurev.fl.23.010191.003125.
J. Jiménez and A. Pinelli, The autonomous cycle of near-wall turbulence, J. Fluid Mech. 389, 335 (1999) 0022-1120 10.1017/S0022112099005066.
A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Cr Acad. Sci. URSS 30, 301 (1941).
Y. Dubief, C. M. White, E. S. G. Shaqfeh, and V. E. Terrapon, Polymer maximum drag reduction: A unique transitional state, in Annual Research Briefs (Center for Turbulence Research, Stanford, CA, 2010), pp. 395-404.
V. E. Terrapon, Y. Dubief, and J. Soria, On the role of pressure in elasto-inertial turbulence, J. Turbul. 16, 26 (2015) 1468-5248 10.1080/14685248.2014.952430.
Y. Dubief and F. Delcayre, On coherent-vortex identification in turbulence, J. Turbul. 1, N11 (2000) 1468-5248 10.1088/1468-5248/1/1/011.
T. Burghelea, E. Segre, and V. Steinberg, Elastic turbulence in von Kármán swirling flow between two disks, Phys. Fluids 19, 053104 (2007) 1070-6631 10.1063/1.2732234.
A. Shekar, R. M. McMullen, S.-N. Wang, B. J. McKeon, and M. D. Graham, Critical-Layer Structures and Mechanisms in Elastoinertial Turbulence, Phys. Rev. Lett. 122, 124503 (2019) 0031-9007 10.1103/PhysRevLett.122.124503.
Y. Dubief, V. Terrapon, C. White, E. Shaqfeh, P. Moin, and S. Lele, New answers on the interaction between polymers and vortices in turbulent flows, Flow Turbul. Combust. 74, 311 (2005) 1386-6184 10.1007/s10494-005-9002-6.
Y. Dubief, V. E. Terrapon, and J. Soria, Analysis of transitional polymeric flows and elastic instabilities, in Proceedings of the Summer Program 2012 (Center for Turbulence Research, Stanford, CA, 2012), pp. 55-63.
B. Purnode and V. Legat, Hyperbolicity and change of type in flows of FENE-P fluids, J. Non-Newtonian Fluid Mech. 65, 111 (1996) 0377-0257 10.1016/0377-0257(96)01449-8.
J. Page, Y. Dubief, and R. R. Kerswell, Exact Traveling Wave Solutions in Viscoelastic Channel Flow, Phys. Rev. Lett. 125, 154501 (2020) 0031-9007 10.1103/PhysRevLett.125.154501.
R. Bird, R. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids. Vol. 2: Kinetic Theory (Wiley-Interscience, New York, 1987).
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.7.073301 for movies of the evolution in time of (Equation presented) contours for the four regimes of EIT.
A. Varshney and V. Steinberg, Drag enhancement and drag reduction in viscoelastic flow, Phys. Rev. Fluids 3, 103302 (2018) 2469-990X 10.1103/PhysRevFluids.3.103302.
G. H. Choueiri, J. M. Lopez, and B. Hof, Exceeding the Asymptotic Limit of Polymer Drag Reduction, Phys. Rev. Lett. 120, 124501 (2018) 0031-9007 10.1103/PhysRevLett.120.124501.
S. Tamano, M. Itoh, S. Hotta, K. Yokota, and Y. Morinishi, Effect of rheological properties on drag reduction in turbulent boundary layer flow, Phys. Fluids 21, 055101 (2009) 1070-6631 10.1063/1.3137163.
P. Garg, I. Chaudhary, M. Khalid, V. Shankar, and G. Subramanian, Viscoelastic Pipe Flow is Linearly Unstable, Phys. Rev. Lett. 121, 024502 (2018) 0031-9007 10.1103/PhysRevLett.121.024502.
I. Chaudhary, P. Garg, G. Subramanian, and V. Shankar, Linear instability of viscoelastic pipe flow, J. Fluid Mech. 908, A11 (2021) 0022-1120 10.1017/jfm.2020.822.
S. Berti, A. Bistagnino, G. Boffetta, A. Celani, and S. Musacchio, Two-dimensional elastic turbulence, Phys. Rev. E 77, 055306 (R) (2008) 1539-3755 10.1103/PhysRevE.77.055306.
S. Berti and G. Boffetta, Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow, Phys. Rev. E 82, 036314 (2010) 1539-3755 10.1103/PhysRevE.82.036314.
Y. Jun and V. Steinberg, Power and Pressure Fluctuations in Elastic Turbulence over a Wide Range of Polymer Concentrations, Phys. Rev. Lett. 102, 124503 (2009) 0031-9007 10.1103/PhysRevLett.102.124503.
G. H. Choueiri, J. M. Lopez, A. Varshney, S. Sankar, and B. Hof, Experimental observation of the origin and structure of elastoinertial turbulence, Proc. Natl. Acad. Sci. USA 118, e2102350118 (2021) 0027-8424 10.1073/pnas.2102350118.