Applied electromagnetism; Electrostatics; Finite element method; Finite elements; Helicoidal coordinates; Twisted geometry; Design/methodology/approach; Electrostatic approximation; Electrostatic models; Electrostatic problems; Helicoidal coordinate; Twisted-pair; Two-dimensional; Weak formulation; Computer Science Applications; Computational Theory and Mathematics; Applied Mathematics; Electrical and Electronic Engineering
Abstract :
[en] Purpose: This paper aims to model a three-dimensional twisted geometry of a twisted pair studied in an electrostatic approximation using only two-dimensional (2D) finite elements. Design/methodology/approach: The proposed method is based on the reformulation of the weak formulation of the electrostatics problem to deal with twisted geometries only in 2D. Findings: The method is based on a change of coordinates and enables a faster computational time as well as a high accuracy. Originality/value: The effectiveness of the adopted approach is demonstrated by studying different configurations related to the IEC 60851-5 standard defined for the measurement of the electrical properties of the insulation of the winding wires used in electrical machines.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Hazim, Kaoutar ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Applied and Computational Electromagnetics (ACE) ; Laboratoire Systèmes Electrotechniques et Environnement (LSEE), Artois University, Béthune, France
Parent, Guillaume; Laboratoire Systèmes Electrotechniques et Environnement (LSEE), Artois University, Béthune, France
Duchesne, Stéphane; Laboratoire Systèmes Electrotechniques et Environnement (LSEE), Artois University, Béthune, France
Nicolet, Andrè; CNRS, Centrale Marseille, Institut Fresnel, Aix-Marseille University, Marseille, France
Geuzaine, Christophe ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
This work is co-financed by the European Union with the financial support of European Regional Development Fund (ERDF), French State and the French Region of Hauts-de-France.
Acero, J., Lope, I., Burdío, J., Carretero, C. and Alonso, R. (2014), “Loss analysis of multistranded twisted wires by using 3D-FEA simulation”, In Proc. COMPEL, Santander, Spain, pp. 1-6, doi: 10.1109/COMPEL.2014.6877168.
Bell, A.G. (1876), “Researches in telephony”, Proceedings of the American Academy of Arts and Sciences, Vol. 12, pp. 1-10, doi: 10.1109/63.903993.
Dular, P., Legros, W. and Nicolet, A. (1998b), “Coupling of local and global quantities in various finite element formulations and its application to electrostatics, magnetostatics and magnetodynamics”, IEEE Transactions on Magnetics, Vol. 34 No. 5, pp. 3078-3081, doi: 10.1109/20.717720.
Dular, P., Geuzaine, C., Henrotte, F. and Legros, W. (1998a), “A general environment for the treatment of discrete problems and its application to the finite element method”, IEEE Transactions on Magnetics, Vol. 34 No. 5, doi: 10.1109/20.717799.
Ern, A. and Guermond, J.-L. (2013), Theory and Practice of Finite Elements, Springer, Vol. 159.
Geuzaine, C. and Remacle, J.-F. (2009), “Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities”, International Journal for Numerical Methods in Engineering, Vol. 79 No. 11, pp. 1309-1331, doi: 10.1002/nme.2579.
Guastavino, F. and Dardano, A. (2012), “Life tests on twisted pairs in presence of partial discharges: influence of the voltage waveform”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19 No. 1, pp. 45-52, doi: 10.1109/TDEI.2012.6148501.
Gustavsen, B., Bruaset, A., Bremnes, J.J. and Hassel, A. (2009), “A finite-element approach for calculating electrical parameters of umbilical cables”, IEEE Transactions on Power Delivery, Vol. 24 No. 4, pp. 2375-2384.
Henrotte, F., Meys, B., Hedia, H., Dular, P. and Legros, W. (1999), “Finite element modelling with transformation techniques”, IEEE Transactions on Magnetics, Vol. 35 No. 3, pp. 1434-1437, doi: 10.1109/20.767235.
IEC (2013), “Specifications for particular types of winding wires – part 0-1: general requirements – enamelled round copper wire”, Standard IEC60317-0-1.
IEC (2019), “Winding wires – test methods – part 5: electrical properties”, Standard IEC60851-5.
Lyly, M., Zermeno, V., Stenvall, A., Lahtinen, V. and Mikkonen, R. (2012), “Finite element simulations of twisted NbTi conductors”, IEEE Transactions on Applied Superconductivity, Vol. 23 No. 3, pp. 6000105-6000105, doi: 10.1109/TASC.2012.2228532.
Moser, J.R. and Spencer, R.F. (1968), “Predicting the magnetic fields from a twisted-pair cable”, IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-10 No. 3, pp. 324-329, doi: 10.1109/TEMC.1968.302936.
Nicolet, A., Movchan, A.B., Guenneau, S. and Zolla, F. (2006), “Asymptotic modelling of weakly twisted electrostatic problems”, Comptes Rendus Mécanique, Vol. 334 No. 2, pp. 91-97, doi: 10.1016/j.crme.2005.12.001.
Nicolet, A., Zolla, F., Agha, Y.O. and Guenneau, S. (2007b), “Leaky modes in twisted microstructured optical fibers”, Waves in Random and Complex Media, Vol. 17 No. 4, pp. 559-570.
Nicolet, A., Movchan, A.B., Geuzaine, C., Zolla, F. and Guenneau, S. (2007a), “High order asymptotic analysis of twisted electrostatic problems”, Physica B: Condensed Matter, Vol. 394 No. 2, pp. 335-338.
Paul, C.R. and Jolly, M.B. (1982), “Sensitivity of crosstalk in twisted-pair circuits to line twist”, IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-24 No. 3, pp. 359-364, doi: 10.1109/TEMC.1982.304067.
Pignari, S.A. and Spadacini, G. (2011), “Plane-wave coupling to a twisted-wire pair above ground”, IEEE Transactions on Electromagnetic Compatibility, Vol. 53 No. 2, pp. 508-523, doi: 10.1109/TEMC.2010.2061855.
Remacle, J., Nicolet, A., Genon, A. and Legros, W. (1994), “Comparison of boundary elements and transformed finite elements for open magnetic problems”, Transactions on Modelling and Simulation, Vol. 7.
Waldron, R.A. (1958), “A helical coordinate system and its applications in electromagnetic theory”, The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 11 No. 4, pp. 438-461, doi: 10.1093/qjmam/11.4.438.