[en] It is well-known that the convergence rate of non-overlapping domain decomposition methods (DDMs) applied to the parallel finite-element solution of large-scale time-harmonic wave problems strongly depends on the transmission condition enforced at the interfaces between the subdomains. Transmission operators based on perfectly matched layers (PMLs) have proved to be well-suited for configurations with layered domain partitions. They are shown to be a good compromise between basic impedance conditions, which can lead to slow convergence, and computational expensive conditions based on the exact Dirichlet-to-Neumann (DtN) map related to the complementary of the subdomain. Unfortunately, the extension of the PML-based DDM for more general partitions with cross-points (where more than two subdomains meet) is rather tricky and requires some care. In this work, we present a non-overlapping substructured DDM with PML transmission conditions for checkerboard (Cartesian) decompositions that takes cross-points into account. In such decompositions, each subdomain is surrounded by PMLs associated to edges and corners. The continuity of Dirichlet traces at the interfaces between a subdomain and PMLs is enforced with Lagrange multipliers. This coupling strategy offers the benefit of naturally computing Neumann traces, which allows to use the PMLs as discrete operators approximating the exact Dirichlet-to-Neumann maps. Two possible Lagrange multiplier finite element spaces are presented, and the behavior of the corresponding DDM is analyzed on several numerical examples.
Disciplines :
Electrical & electronics engineering Mathematics
Author, co-author :
Royer, Anthony ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Geuzaine, Christophe ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Béchet, Eric ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Modave, Axel ; POEMS, CNRS, Inria, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
Language :
English
Title :
A non-overlapping domain decomposition method with perfectly matched layer transmission conditions for the Helmholtz equation
Publication date :
15 May 2022
Journal title :
Computer Methods in Applied Mechanics and Engineering
This research was funded in part through the ARC grant for Concerted Research Actions (ARC WAVES 15/19-03), financed by the Wallonia-Brussels Federation of Belgium .Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region .
Moiola, A., Spence, E.A., Is the Helmholtz equation really sign-indefinite?. SIAM Rev. 56:2 (2014), 274–312.
Ernst, O.G., Gander, M.J., Why it is difficult to solve Helmholtz problems with classical iterative methods. Numer. Anal. Multiscale Probl.ms, 2012, 325–363.
Toselli, A., Widlund, O., Domain Decomposition Methods - Algorithms and Theory, Vol. 34. 2005, Springer-Verlag Berlin Heidelberg.
Gander, M.J., Zhang, H., A class of iterative solvers for the Helmholtz equation: Factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods. SIAM Rev. 61:1 (2019), 3–76.
Cai, X.-C., Widlund, O.B., Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Stat. Comput. 13:1 (1992), 243–258.
Kimn, J.-H., Sarkis, M., Restricted overlapping balancing domain decomposition methods and restricted coarse problems for the Helmholtz problem. Comput. Methods Appl. Mech. Engrg. 196:8 (2007), 1507–1514.
Gander, M.J., Zhang, H., Optimized Schwarz methods with overlap for the Helmholtz equation. SIAM J. Sci. Comput. 38:5 (2016), A3195–A3219.
Benamou, J.-D., Desprès, B., A domain decomposition method for the Helmholtz equation and related optimal control problems. J. Comput. Phys. 136:1 (1997), 68–82.
Collino, F., Ghanemi, S., Joly, P., Domain decomposition method for harmonic wave propagation: a general presentation. Comput. Methods Appl. Mech. Engrg. 184:2–4 (2000), 171–211.
Gander, M.J., Magoules, F., Nataf, F., Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24:1 (2002), 38–60.
de La Bourdonnaye, A., Farhat, C., Macedo, A., Magoules, F., Roux, F.-X., A non-overlapping domain decomposition method for the exterior Helmhokz problem. Contemp. Math. 218 (1998), 42–66.
Farhat, C., Macedo, A., Lesoinne, M., A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems. Numer. Math. 85:2 (2000), 283–308.
Farhat, C., Macedo, A., Lesoinne, M., Roux, F.-X., Magoulés, F., de La Bourdonnaie, A., Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems. Comput. Methods Appl. Mech. Engrg. 184:2–4 (2000), 213–239.
Farhat, C., Avery, P., Tezaur, R., Li, J., FETI-DPH: a dual-primal domain decomposition method for acoustic scattering. J. Comput. Acoust. 13 (2005), 499–524.
Zepeda-Núñez, L., Demanet, L., The method of polarized traces for the 2D Helmholtz equation. J. Comput. Phys. 308 (2016), 347–388.
Zepeda-Núñez, L., Scheuer, A., Hewett, R.J., Demanet, L., The method of polarized traces for the 3D Helmholtz equation. Geophysics 84:4 (2019), T313–T333.
Conen, L., Dolean, V., Krause, R., Nataf, F., A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator. J. Comput. Appl. Math. 271 (2014), 83–99.
Ganesh, M., Morgenstern, C., High-order FEM domain decomposition models for high-frequency wave propagation in heterogeneous media. Comput. Math. Appl. 75:6 (2018), 1961–1972.
Graham, I., Spence, E., Vainikko, E., Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption. Math. Comp. 86:307 (2017), 2089–2127.
Stolk, C.C., A rapidly converging domain decomposition method for the Helmholtz equation. J. Comput. Phys. 241 (2013), 240–252.
Stolk, C.C., An improved sweeping domain decomposition preconditioner for the Helmholtz equation. Adv. Comput. Math. 43:1 (2017), 45–76.
Vion, A., Geuzaine, C., Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz problem. J. Comput. Phys. 266 (2014), 171–190.
Nataf, F., Nier, F., Convergence rate of some domain decomposition methods for overlapping and nonoverlapping subdomains. Numer. Math. 75:3 (1997), 357–377.
Nataf, F., Interface connections in domain decomposition methods. Modern Methods in Scientific Computing and Applications, 2002, Springer, 323–364.
Hagstrom, T., Tewarson, R.P., Jazcilevich, A., Numerical experiments on a domain decomposition algorithm for nonlinear elliptic boundary value problems. Appl. Math. Lett. 1:3 (1988), 299–302.
Després, B., Méthodes de Décomposition de Domaines Pour les Problemes de Propagation D'ondes en Régime Harmonique. Le Théoreme de Borg et L’équation de Hill Vectorielle. (Ph.D. thesis, Ph. D. dissertation), 1991, Université Paris 9, France.
Nataf, F., Rogier, F., de Sturler, E., Optimal interface conditions for domain decomposition methods. CMAP 301 (1994), 1–18.
Piacentini, A., Rosa, N., An improved domain decomposition method for the 3D Helmholtz equation. Comput. Methods Appl. Mech. Engrg. 162:1–4 (1998), 113–124.
Boubendir, Y., Antoine, X., Geuzaine, C., A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 231:2 (2012), 262–280.
Boubendir, Y., Midura, D., Non-overlapping domain decomposition algorithm based on modified transmission conditions for the Helmholtz equation. Comput. Math. Appl. 75:6 (2018), 1900–1911.
Kim, S., Zhang, H., Optimized Schwarz method with complete radiation transmission conditions for the Helmholtz equation in waveguides. SIAM J. Numer. Anal. 53:3 (2015), 1537–1558.
Marsic, N., De Gersem, H., Convergence of classical optimized non-overlapping Schwarz method for Helmholtz problems in closed domains. 2021 Preprint. http://arxiv.org/abs/2001.01502. arXiv:2001.01502.
Stupfel, B., Improved transmission conditions for a one-dimensional domain decomposition method applied to the solution of the Helmholtz equation. J. Comput. Phys. 229:3 (2010), 851–874.
Lecouvez, M., Stupfel, B., Joly, P., Collino, F., Quasi-local transmission conditions for non-overlapping domain decomposition methods for the Helmholtz equation. Comp. R. Phys. 15:5 (2014), 403–414.
Lecouvez, M., Méthodes Itératives de Décomposition de Domaine Sans Recouvrement avec Convergence Géométrique Pour L’équation de Helmholtz. (Ph.D. thesis), 2015, École Polytechnique.
Collino, F., Joly, P., Lecouvez, M., Exponentially convergent non overlapping domain decomposition methods for the Helmholtz equation. ESAIM Math. Model. Numer. Anal. 54:3 (2020), 775–810.
Gander, M.J., Santugini-Repiquet, K., Cross-points in domain decomposition methods with a finite element discretization. Electron. Trans. Numer. Anal. 45 (2016), 219–240.
Bendali, A., Boubendir, Y., Non-overlapping domain decomposition method for a nodal finite element method. Numer. Math. 103:4 (2006), 515–537.
Nicolopoulos-Salle, A., Formulations Variationnelles d’équations de Maxwell Résonantes et Problèmes aux Coins en Propagation d'ondes. (Ph.D. thesis), 2019, Sorbonne université.
Després, B., Nicolopoulos, A., Thierry, B., Corners and stable optimized domain decomposition methods for the Helmholtz problem. 2020 Preprint. https://hal.archives-ouvertes.fr/hal-02612368.
M.J. Gander, L. Halpern, A simple finite difference discretization for Ventcell transmission conditions at cross points, in: Proceedings of the 26th International Domain Decomposition Conference, 2020.
Claeys, X., Non-local variant of the optimised Schwarz method for arbitrary non-overlapping subdomain partitions. ESAIM: M2AN 55:2 (2021), 429–448, 10.1051/m2an/2020083.
Claeys, X., Parolin, E., Robust treatment of cross points in optimized Schwarz methods. 2020 Preprint. http://arxiv.org/abs/2003.06657. arXiv:2003.06657.
Claeys, X., Collino, F., Parolin, E., Matrix form of nonlocal OSM for electromagnetics. 2021 Preprint. http://arxiv.org/abs/2108.11352. arXiv:2108.11352.
Després, B., Nicolopoulos, A., Thierry, B., On domain decomposition methods with optimized transmission conditions and cross-points. 2021 Preprint. https://hal.archives-ouvertes.fr/hal-03230250.
Parolin, E., Non-overlapping Domain Decomposition Methods with Non-Local Transmissionoperators for Harmonic Wave Propagation Problems. (Ph.D. thesis), 2020, Institut Polytechnique de Paris.
Modave, A., Royer, A., Antoine, X., Geuzaine, C., A non-overlapping domain decomposition method with high-order transmission conditions and cross-point treatment for Helmholtz problems. Comput. Methods Appl. Mech. Engrg., 368, 2020, 113162.
Modave, A., Geuzaine, C., Antoine, X., Corner treatments for high-order local absorbing boundary conditions in high-frequency acoustic scattering. J. Comput. Phys., 401, 2020, 109029.
Toselli, A., Some results on overlapping Schwarz methods for the Helmholtz equation employing perfectly matched layers. Domain Decomposition Methods in Sciences and Engineering XI, 1998, 539–545.
Schädle, A., Zschiedrich, L., Additive Schwarz method for scattering problems using the PML method at interfaces. Domain Decomposition Methods in Science and Engineering XVI, 2007, Springer, 205–212.
Astaneh, A.V., Guddati, M.N., A two-level domain decomposition method with accurate interface conditions for the Helmholtz problem. Internat. J. Numer. Methods Engrg. 107:1 (2016), 74–90.
Leng, W., Ju, L., An additive overlapping domain decomposition method for the Helmholtz equation. SIAM J. Sci. Comput. 41:2 (2019), A1252–A1277.
Boffi, D., Brezzi, F., Fortin, M., Mixed Finite Element Methods and Applications, Vol. 44. 2013, Springer.
Ern, A., Guermond, J.-L., Finite Elements II, Galerkin Approximation, Elliptic and Mixed PDEs Texts in Applied Mathematics, 2021, Springer, Cham, 364 Ch. 50.
Bermúdez, A., Hervella-Nieto, L., Prieto, A., Rodríguez, R., An exact bounded PML for the Helmholtz equation. C. R. Math. 339:11 (2004), 803–808.
Bermúdez, A., Hervella-Nieto, L., Prieto, A., Rodríguez, R., An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. J. Comput. Phys. 223:2 (2007), 469–488.
Bermúdez, A., Hervella-Nieto, L., Prieto, A., Rodríguez, R., An exact bounded perfectly matched layer for time-harmonic scattering problems. SIAM J. Sci. Comput. 30:1 (2007), 312–338.
Solin, P., Segeth, K., Dolezel, I., Higher-Order Finite Element Methods. 2003, CRC Press.
Peng, Z., Lee, J.-F., Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics. J. Comput. Phys. 229:16 (2010), 5615–5629.
Nédélec, J.-C., A new family of mixed finite elements in R3. Numer. Math. 50 (1986), 57–81.
Nédélec, J.-C., Mixed finite elements in R3. Numer. Math. 35 (1980), 315–341.
Bathe, K.-J., The inf-sup condition and its evaluation for mixed finite element methods. Comput. Struct., 2000, 1–10.
Béchet, E., Moës, N., Wohlmuth, B.I., A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Internat. J. Numer. Methods Engrg. 78:8 (2009), 931–954.
Thierry, B., Vion, A., Tournier, S., El Bouajaji, M., Colignon, D., Marsic, N., Antoine, X., Geuzaine, C., GetDDM: An open framework for testing optimized Schwarz methods for time-harmonic wave problems. Comput. Phys. Comm. 203 (2016), 309–330.
Royer, A., Béchet, E., Geuzaine, C., Gmsh-Fem: An efficient finite element library based on gmsh. 14th WCCM-ECCOMAS Congress, 2021, 1–13.
Geuzaine, C., Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Internat. J. Numer. Methods Engrg. 79 (2009), 1309–1331.
Guddati, M.N., Lim, K.-W., Continued fraction absorbing boundary conditions for convex polygonal domains. Internat. J. Numer. Methods Engrg. 66:6 (2006), 949–977.
Loisel, S., Condition number estimates for the nonoverlapping optimized Schwarz method and the 2-Lagrange multiplier method for general domains and cross points. SIAM J. Numer. Anal. 51:6 (2013), 3062–3083.