Ahmad, F., Kelso, W.I., Pyrophosphate as a source of phosphorus: hydrolysis under different conditions. J. Res. 12 (2001), 130–139.
Bargaz, A., Elhaissoufi, W., Khourchi, S., Benmrid, B., Borden, K.A., Rchiad, Z., Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiol. Res., 252, 2021, 126842, 10.1016/J.MICRES.2021.126842.
Bargaz, A., Noyce, G.L., Fulthorpe, R., Carlsson, G., Furze, J.R., Jensen, E.S., Dhiba, D., Isaac, M.E., Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P de fi ciency. Appl. Soil Ecol. 120 (2017), 179–188, 10.1016/j.apsoil.2017.08.011.
Bautista-Cruz, A., Antonio-Revuelta, B., del Carmen Martínez Gallegos, V., Báez-Pérez, A., Phosphate-solubilizing bacteria improve Agave angustifolia Haw. growth under field conditions. J. Sci. Food Agric. 99 (2019), 6601–6607, 10.1002/jsfa.9946.
Behera, B.C., Yadav, H., Singh, S.K., Mishra, R.R., Sethi, B.K., Dutta, S.K., Thatoi, H.N., Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. J. Genet. Eng. Biotechnol. 15 (2017), 169–178, 10.1016/j.jgeb.2017.01.003.
Benbrik, B., Elabed, A., El Modafar, C., Douira, A., Amir, S., Filali-Maltouf, A., El Abed, S., El Gachtouli, N., Mohammed, I., Koraichi, S.I., Reusing phosphate sludge enriched by phosphate solubilizing bacteria as biofertilizer: growth promotion of Zea mays. Biocatal. Agric. Biotechnol., 30, 2020, 10.1016/j.bcab.2020.101825.
Benidire, L., Madline, A., Pereira, S.I.A., Castro, P.M.L., Boularbah, A., Synergistic effect of organo-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the establishment of vegetation cover and amelioration of mine tailings. Chemosphere, 262, 2021, 127803, 10.1016/J.CHEMOSPHERE.2020.127803.
Bovill, W.D., Huang, C.Y., McDonald, G.K., Genetic approaches to enhancing phosphorus-use efficiency (PUE) in crops: challenges and directions. Crop Pasture Sci., 64, 2013, 179, 10.1071/CP13135.
Bünemann, E.K., Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients. Soil Biol. Biochem. 40 (2008), 2116–2129, 10.1016/J.SOILBIO.2008.03.001.
Busman, L.M., Behavior of Polyphosphates in Soils. 1984, PhD dissertation, Iowa State University https://doi.org/10.31274/rtd-180813-8942.
Campos, P., Borie, F., Cornejo, P., López-Ráez, J.A., López-García, Á., Seguel, A., Phosphorus acquisition efficiency related to root traits: is mycorrhizal symbiosis a key factor to wheat and barley cropping?. Front. Plant Sci., 9, 2018, 752, 10.3389/fpls.2018.00752.
Chen, Q., Liu, S., Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China. Front. Microbiol. 10 (2019), 1–12, 10.3389/fmicb.2019.02171.
Chen, W., Yang, F., Zhang, L., Wang, J., Organic acid secretion and phosphate solubilizing efficiency of pseudomonas sp. PSB12: effects of phosphorus forms and carbon sources. Geomicrobiol. J., 33, 2016, 10.1080/01490451.2015.1123329.
Chtouki, M., Naciri, R., Garré, S., Nguyen, F., Oukarroum, A., Chickpea plant responses to polyphosphate fertiliser forms and drip fertigation frequencies: effect on photosynthetic performance and phenotypic traits. Funct. Plant Biol. 49 (2021), 505–516, 10.1071/FP21035.
Darch, T., Blackwell, M.S.A., Chadwick, D., Haygarth, P.M., Hawkins, J.M.B., Turner, B.L., Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis. Geoderma 284 (2016), 93–102, 10.1016/J.GEODERMA.2016.08.018.
Dick, R.P., Hydrolysis and availability to plants of polyphosphates added to soils, 1985, PhD dissertation, Iowa State University., Iowa State https://doi.org/https://lib.dr.iastate.edu/rtd/12054.
Dick, R.P., Tabatabai, M.A., Hydrolysis of polyphosphates in soils. Soil Sci. 142 (1986), 132–140, 10.1097/00010694-198609000-00002.
Dick, R.P., Tabatabai, M.A., Hydrolysis of polyphosphates by corn roots. Plant Soil 94 (1986), 247–256, 10.1007/BF02374348.
Dick, R.P., Tabatabai, M.A., Factors affecting hydrolysis of polyphosphates in soils. Soil Sci. 143 (1987), 97–104, 10.1097/00010694-198702000-00003.
Dick, R.P., Tabatabai, M.A., Polyphosphates as sources of phosphorus for plants. Fertil. Res. 12 (1987), 107–118, 10.1007/BF01048912.
Elhaissoufi, W., Ghoulam, C., Barakat, A., Zeroual, Y., Bargaz, A., Phosphate bacterial solubilization: a key rhizosphere driving force enabling higher P use efficiency and crop productivity. J. Adv. Res. 38 (2022), 13–28, 10.1016/J.JARE.2021.08.014.
Elhaissoufi, W., Khourchi, S., Ibnyasser, A., Ghoulam, C., Rchiad, Z., Zeroual, Y., Lyamlouli, K., Bargaz, A., Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere p solubilization. Front. Plant Sci., 11, 2020, 979, 10.3389/fpls.2020.00979.
Emami, S., Alikhani, H.A., Pourbabaei, A.A., Etesami, H., Sarmadian, F., Motessharezadeh, B., Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environ. Sci. Pollut. Res. 26 (2019), 19804–19813, 10.1007/s11356-019-05284-x.
Emami, S., Alikhani, H.A., Pourbabaee, A.A., Etesami, H., Motasharezadeh, B., Sarmadian, F., Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils. Rhizosphere, 14, 2020, 100196, 10.1016/j.rhisph.2020.100196.
Gao, Y., Wang, X., Shah, J.A., Chu, G., Polyphosphate fertilizers increased maize (Zea mays L.) P, Fe, Zn, and Mn uptake by decreasing P fixation and mobilizing microelements in calcareous soil. J. Soils Sediment. 20 (2020), 1–11, 10.1007/s11368-019-02375-7.
Guo, S., Feng, B., Xiao, C., Wang, Q., Zhou, Y., Chi, R., Effective solubilization of rock phosphate by a phosphate-tolerant bacterium serratia sp. Geomicrobiol. J. 38 (2021), 561–569, 10.1080/01490451.2021.1903623.
Gupta, M., Bisht, S., Singh, B., Enhanced biomass and steviol glycosides in Stevia rebaudiana treated with phosphate-solubilizing bacteria and rock phosphate. Plant Growth Regul 65 (2011), 449–457 https://doi.org/10.1007/s10725-011-9615-9.
Gupta, M., Kiran, S., Gulati, A., Singh, B., Tewari, R., Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol. Res. 167 (2012), 358–363, 10.1016/j.micres.2012.02.004.
Hamilton, J.G., Hilger, D., Peak, D., Mechanisms of tripolyphosphate adsorption and hydrolysis on goethite. J. Colloid Interface Sci. 491 (2017), 190–198, 10.1016/J.JCIS.2016.12.036.
Hinsinger, P., Betencourt, E., Bernard, L., Brauman, A., Plassard, C., Shen, J., Tang, X., Zhang, F., P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 156 (2011), 1078–1086, 10.1104/pp.111.175331.
Hollender, C.A., Hill, J.L., Waite, J., Dardick, C., Opposing influences of TAC1 and LAZY1 on lateral shoot orientation in arabidopsis. Sci. Rep., 10, 2020, 10.1038/s41598-020-62962-4.
Huang, R., Wan, B., Hultz, M., Diaz, J.M., Tang, Y., Phosphatase-mediated hydrolysis of linear polyphosphates. Environ. Sci. Technol. 52 (2018), 1183–1190, 10.1021/acs.est.7b04553.
Ku, Y., Xu, G., Tian, X., Xie, H., Yang, X., Cao, C., Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6. PLOS One, 13, 2018, e0200181, 10.1371/journal.pone.0200181.
Kumar, P., Aeron, A., Shaw, N., Singh, A., Bajpai, V.K., Pant, S., Dubey, R.C., Seed bio-priming with tri-species consortia of phosphate solubilizing rhizobacteria (PSR) and its effect on plant growth promotion. Heliyon, 6, 2020, 10.1016/j.heliyon.2020.e05701.
Kumar, R., Shastri, B., Role of phosphate-solubilising microorganisms in sustainable agricultural development. in: agro-environmental sustainability. Agro-Environmental Sustainability, 2017, Springer International Publishing, Cham, 271–303, 10.1007/978-3-319-49724-2_13.
Liu, H., Wu, X.Q., Ren, J.H., Ye, J.R., Isolation and identification of phosphobacteria in poplar rhizosphere from different regions of China. Pedosphere, 21, 2011, 10.1016/S1002-0160(10)60083-5.
Lobo, C.B., Juárez Tomás, M.S., Viruel, E., Ferrero, M.A., Lucca, M.E., Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol. Res. 219 (2019), 12–25, 10.1016/J.MICRES.2018.10.012.
Lynch, J.P., Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. N. Phytol. 223 (2019), 548–564, 10.1111/nph.15738.
Lyu, Y., Tang, H., Li, H., Zhang, F., Rengel, Z., Whalley, W.R., Shen, J., Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Front. Plant Sci., 7, 2016, 1939, 10.3389/fpls.2016.01939.
McBeath, T.M., Chemical Reactions of Polyphosphate Fertilisers in Soils and Solutions. (Ph.D. thesis)., 2006, University of Adelaide School.
McBeath, T.M., Lombi, E., McLaughlin, M.J., Bünemann, E.K., Polyphosphate-fertilizer solution stability with time, temperature, and pH. J. Plant Nutr. Soil Sci. 170 (2007), 387–391, 10.1002/jpln.200625166.
McBeath, T.M., Armstrong, R.D., Lombi, E., McLaughlin, M.J., Holloway, R.E., Responsiveness of wheat (Triticum aestivum) to liquid and granular phosphorus fertilisers in southern Australian soils. Soil Res., 43, 2005, 203, 10.1071/SR04066.
McBeath, T.M., McLaughlin, M.J., Armstrong, R.D., Bell, M., Bolland, M.D.A., Conyers, M.K., Holloway, R.E., Mason, S.D., Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils. Soil Res., 45, 2007, 448, 10.1071/SR07044.
McCormack, M.L., Dickie, I.A., Eissenstat, D.M., Fahey, T.J., Fernandez, C.W., Guo, D., Helmisaari, H.-S., Hobbie, E.A., Iversen, C.M., Jackson, R.B., Leppälammi-Kujansuu, J., Norby, R.J., Phillips, R.P., Pregitzer, K.S., Pritchard, S.G., Rewald, B., Zadworny, M., Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. N. Phytol. 207 (2015), 505–518, 10.1111/nph.13363.
Mukherjee, C., Chowdhury, R., Ray, K., Phosphorus recycling from an unexplored source by polyphosphate accumulating microalgae and cyanobacteria-a step to phosphorus security in agriculture. Front. Microbiol., 6, 2015, 1421, 10.3389/fmicb.2015.01421.
Naz, M.Y., Sulaiman, S.A., Slow release coating remedy for nitrogen loss from conventional urea: a review. J. Control. Release 225 (2016), 109–120, 10.1016/j.jconrel.2016.01.037.
Pande, A., Pandey, P., Mehra, S., Singh, M., Kaushik, S., Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. J. Genet. Eng. Biotechnol. 15 (2017), 379–391, 10.1016/j.jgeb.2017.06.005.
Perrig, D., Boiero, M.L., Masciarelli, O.A., Penna, C., Ruiz, O.A., Cassán, F.D., Luna, M.V., Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl. Microbiol. Biotechnol. 75 (2007), 1143–1150, 10.1007/s00253-007-0909-9.
Ramesh, A., Sharma, S.K., Joshi, O.P., Khan, I.R., Phytase, phosphatase activity and p-nutrition of soybean as influenced by inoculation of Bacillus. Indian J. Microbiol. 51 (2011), 94–99, 10.1007/s12088-011-0104-7.
Rasul, M., Yasmin, S., Yahya, M., Breitkreuz, C., Tarkka, M., Reitz, T., The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways. Microbiol. Res., 246, 2021, 10.1016/j.micres.2021.126703.
Reitzel, K., Turner, B.L., Quantification of pyrophosphate in soil solution by pyrophosphatase hydrolysis. Soil Biol. Biochem. 74 (2014), 95–97, 10.1016/j.soilbio.2014.03.001.
Rezakhani, L., Motesharezadeh, B., Tehrani, M.M., Etesami, H., Mirseyed Hosseini, H., Phosphate–solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source. Ecotoxicol. Environ. Saf. 173 (2019), 504–513, 10.1016/j.ecoenv.2019.02.060.
Rubio, E.J., Montecchia, M.S., Tosi, M., Cassán, F.D., Perticari, A., Correa, O.S., Genotypic characterization of azotobacteria isolated from argentinean soils and plant-growth-promoting traits of selected strains with prospects for biofertilizer production. Sci. World J., 2013, 2013, 10.1155/2013/519603.
Santos-Torres, M., Romero-Perdomo, F., Mendoza-Labrador, J., Gutiérrez, A., Vargas, C., Castro-Rincon, E., Caro-Quintero, A., Uribe-Velez, D., Estrada-Bonilla, G., Genomic and phenotypic analysis of rock phosphate-solubilizing rhizobacteria. Rhizosphere, 17, 2021, 10.1016/J.RHISPH.2020.100290.
Secco, D., Bouain, N., Rouached, A., Prom-u-thai, C., Hanin, M., Pandey, A.K., Rouached, H., Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Crit. Rev. Biotechnol. 37 (2017), 898–910, 10.1080/07388551.2016.1268089.
Shaikh, S., Saraf, M., Biofortification of Triticum aestivum through the inoculation of zinc solubilizing plant growth promoting rhizobacteria in field experiment. Biocatal. Agric. Biotechnol. 9 (2017), 120–126, 10.1016/j.bcab.2016.12.008.
Shand, C.A., Smith, S., Enzymatic release of phosphate from model substrates and P compounds in soil solution from a peaty podzol. Biol. Fertil. Soils, 24, 1997, 10.1007/s003740050229.
Suleman, M., Id, S.Y., Rasul, M., Yahya, M., Atta, M., Mirza, M.S., 2018. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat 13, 1–28.
Sun, Y., Mu, C., Liu, X., Key factors identified by proteomic analysis in maize (Zea mays L.) seedlings’ response to long-term exposure to different phosphate levels. Proteome Sci. 16 (2018), 1–17, 10.1186/s12953-018-0147-3.
Swetha, S., Padmavathi, T., Study of acid phosphatase in solubilization of inorganic phosphates by piriformospora indica. Pol. J. Microbiol. 65 (2016), 407–412, 10.5604/17331331.1227666.
Syers, J.K., Johnston, A.E., Curtin, D., 2008. Efficiency of soil and fertilizer phosphorus use: reconciling changing concepts of soil phosphorus behaviour with agronomic information, FAO Fertilizer and Plant Nutrition Bulletin (FAO). Food and Agriculture Organization of the United Nations.
Tabatabai, M.A., Bremner, J.M., Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1 (1969), 301–307, 10.1016/0038-0717(69)90012-1.
Teng, Z., Chen, Z., Zhang, Q., Yao, Y., Song, M., Li, M., Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soils of the Yeyahu Wetland in Beijing, China. Environ. Sci. Pollut. Res., 26, 2019, 10.1007/s11356-018-2955-5.
Torres-Dorante, L.O., Claassen, N., Steingrobe, B., Olfs, H.-W., Hydrolysis rates of inorganic polyphosphates in aqueous solution as well as in soils and effects on P availability. J. Plant Nutr. Soil Sci. 168 (2005), 352–358, 10.1002/jpln.200420494.
Torres-Dorante, L.O., Claassen, N., Steingrobe, B., Olfs, H.-W., Fertilizer-use efficiency of different inorganic polyphosphate sources: effects on soil P availability and plant P acquisition during early growth of corn. J. Plant Nutr. Soil Sci. 169 (2006), 509–515, 10.1002/jpln.200520584.
Venugopalan, M.V., Prasad, R., Relative efficiency of ammonium polyphosphate and orthophosphates for wheat and their residual effects on succeeding cowpea fodder. Fertil. Res. 20 (1989), 109–114, 10.1007/BF01055435.
Vyas, P., Gulati, A., Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9 (2009), 1–15, 10.1186/1471-2180-9-174.
Wang, X., Gao, Y., Hu, B., Chu, G., Comparison of the hydrolysis characteristics of three polyphosphates and their effects on soil P and micronutrient availability. Soil Use Manag 35 (2019), 664–674, 10.1111/sum.12526.
Wang, Y.S., Jensen, L.S., Magid, J., Differential responses of root and root hair traits of spring wheat genotypes to phosphorus deficiency in solution culture. Plant, Soil Environ. 62 (2016), 540–546, 10.17221/485/2016-PSE.
Zeng, Q., Wu, X., Wen, X., Effects of soluble phosphate on phosphate-solubilizing characteristics and expression of gcd gene in pseudomonas frederiksbergensis JW-SD2. Curr. Microbiol. 72 (2016), 198–206, 10.1007/s00284-015-0938-z.
Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., Chen, Q., Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol. Res., 169, 2014, 10.1016/j.micres.2013.07.003.