[en] Surface melt over the Antarctic ice shelves is one of the largest uncertainties related to sea level rise over the 21st century. However, current climate models still struggle to accurately represent it, limiting our comprehension of processes driving melt spatial and temporal variability and its consequences on the stability of the Antarctic ice sheet. Recent advances in Earth monitoring thanks to satellites have enabled new estimations of Antarctic melt extent. They can detect if and where melt occurs, while the amount of meltwater produced can only be deduced from model simulations. In order to combine advantages of both tools, we present new melt estimates based on a regional climate model assimilating the satellite-derived melt extent. This improves the comparison between model and satellite estimates paving the way for a re-estimation of the amount of melt produced each year on the surface of the entire Antarctic ice sheet. [fr] La fonte de surface sur les plateformes de glace en Antarctique est l'une des plus grandes incertitudes liées à l'augmentation du niveau de la mer pendant le 21e siècle. Cependant, les modèles climatiques actuels peinent encore à la représenter avec précision, ce qui limite la compréhension des processus expliquant sa variabilité spatiale et temporelle et ses conséquences sur la stabilité de l’inlandsis de l’Antarctique. Les progrès récents de surveillance de la Terre grâce aux satellites ont permis de créer de nouvelles estimations de l'étendue de la fonte en Antarctique. Ceux-ci peuvent détecter si et où la fonte se produit, tandis que la quantité d'eau de fonte produite ne peut par contre être déduite que de simulations climatiques. Afin de combiner les avantages des deux outils, nous présentons de nouvelles estimations de la fonte basées sur un modèle climatique régional assimilant l'étendue de la fonte dérivée des satellites. Cela améliore la comparaison entre les estimations du modèle et du satellite, ouvrant ainsi la voie à une ré-estimation de la quantité de fonte produite chaque année à la surface de l'ensemble de l'inlandsis de l’Antarctique.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M.R., Lenaerts, J., van Wessem, J. M., van de Berg, W.J. & Fettweis, X. (2019). Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979-2015) and identification of dominant processes. The Cryosphere, 13, 281-296. https://doi. org/10.5194/tc-13-281-2019
Arthur, J.F., Stokes, C., Jamieson, S.S., Carr, J.R. & Leeson, A.A. (2020). Recent understanding of Antarctic supraglacial lakes using satellite remote sensing. Progress in Physical Geography: Earth and Environment, 0309133320916114. https://doi. org/10.1177%2F0309133320916114
Datta, R.T., Tedesco, M., Agosta, C., Fettweis, X., Kuipers Munneke, P. & Broeke, M.R. (2018). Melting over the northeast Antarctic Peninsula (1999-2009): evaluation of a high-resolution regional climate model. The Cryosphere, 12, 2901-2922. https://doi. org/10.5194/tc-12-2901-2018
Datta, R.T., Tedesco, M., Fettweis, X., Agosta, C., Lhermitte, S., Lenaerts, J.T. & Wever, N. (2019). The effect of Foehn-induced surface melt on firn evolution over the northeast Antarctic peninsula. Geophysical Research Letters, 46, 3822-3831. https:// doi.org/10.1029/2018GL080845
Dell, R., Arnold, N., Willis, I., Banwell, A., Williamson, A., Pritchard, H. & Orr, A. (2020). Lateral meltwater transfer across an Antarctic ice shelf. The Cryosphere, 14, 2313-2330. https://doi.org/10.5194/ tc-14-2313-2020
De Ridder, K. (1997). Radiative transfer in the IAGL land surface model. Journal of Applied Meteorology, 36, 12-21. https://doi.org/10.1175/1520-0450(1997) 036%3C0012:RTITIL%3E2.0.CO;2
De Ridder, K. & Schayes, G. (1997). The IAGL land surface model. Journal of applied meteorology, 36, 167-182. https://doi.org/10.1175/1520-0450(1997) 036%3C0167:TILSM%3E2.0.CO;2
Donat-Magnin, M., Jourdain, N.C., Gallée, H., Amory, C., Kittel, C., Fettweis, X., Wille, J.D., Favier, V., Drira, A. & Agosta, C. (2020). Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica. The Cryosphere, 14, 229-249. https://doi.org/10.5194/ tc-14-229-2020
Donat-Magnin, M., Jourdain, N.C., Kittel, C., Agosta, C., Amory, C., Gallée, H., Krinner, G. & Chekki, M. (2021). Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet. The Cryosphere, 15, 571-593. https://doi. org/10.5194/tc-15-571-2021
Doutreloup, S., Kittel, C., Wyard, C., Belleflamme, A., Amory, C., Erpicum, M. & Fettweis, X. (2019). Precipitation evolution over Belgium by 2100 and sensitivity to convective schemes using the regional climate model MAR. Atmosphere, 10, 321. https:// doi.org/10.3390/atmos10060321
Fettweis, X., van Ypersele, J.-P., Gallée, H., Lefebre, F. & Lefebvre, W. (2007). The 1979-2005 Greenland Ice Sheet melt extent from passive microwave data using an improved version of the melt retrieval XPGR algorithm. Geophysical Research Letters, 34, L05502. https://doi:10.1029/2006GL028787
Fürst, J.J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M., Braun, M. & Gagliardini, O. (2016). The safety band of Antarctic ice shelves. Nature Climate Change, 6, 479-482. https://doi.org/10.1038/ nclimate2912
Gallée, H. (1995). Simulation of the mesocyclonic activity in the Ross Sea, Antarctica. Monthly Weather Review, 123, 2051-2069. https://doi.org/10.1175/152 0-0493(1995)123%3C2051:SOTMAI%3E2.0.CO;2
Gallée, H. & Duynkerke, P.G. (1997). Air-snow interactions and the surface energy and mass balance over the melting zone of west Greenland during the Greenland Ice Margin Experiment. Journal of Geophysical Research: Atmospheres, 102, 13 813-13 824. https://doi.org/10.1029/96JD03358
Gallée, H., Guyomarc'h, G. & Brun, E. (2001). Impact of snow drift on the Antarctic Ice Sheet surface mass balance: Possible sensitivity to snow-surface properties. Boundary-Layer Meteorology, 99, 1-19. https://doi.org/10.1023/A:1018776422809
Gallée, H. & Schayes, G. (1994). Development of a three-dimensional meso-γprimitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Monthly Weather Review, 122, 671-685. https://doi.org/10.1175/1520-0493(1994)122< 0671:DOATDM>2.0.CO;2
Gilbert, E. & Kittel, C. (2021). Surface Melt and Runoff on Antarctic Ice Shelves at 1.5°C, 2°C, and 4°C of Future Warming. Geophysical Research Letters, 48, e2020GL091 733. https://doi. org/10.1029/2020GL091733
Harper, J., Humphrey, N. & Pfeffer, W. (2012). Greenland Ice Sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature, 491, 240-243. https://doi.org/10.1038/nature11566, 2012
Helsen, M.M., Van Den Broeke, M.R., Van De Wal, R.S., Van De Berg, W.J., Van Meijgaard, E., Davis, C.H., Li, Y. & Goodwin, I. (2008). Elevation changes in Antarctica mainly determined by accumulation variability. Science, 320, 1626-1629. https://doi. org/10.1126/science.1153894
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S. & Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quaterly Journal of the Royal Meteorologic Society, 146, 1999-2049. https://doi.org/10.1002/qj.3803
Johnson, A., Fahnestock, M. & Hock, R. (2020). Evaluation of passive microwave melt detection methods on Antarctic Peninsula ice shelves using time series of Sentinel-1 SAR. Remote Sensing of Environment, 250, 112 044. https://doi.org/10.1016/j. rse.2020.112044
Kingslake, J., Ely, J.C., Das, I. & Bell, R.E. (2017). Widespread movement of meltwater onto and across Antarctic ice shelves. Nature, 544, 349-352. https:// doi.org/10.1038/nature22049
Kittel, C., Amory, C., Agosta, C., Jourdain, N.C., Hofer, S., Delhasse, A., Doutreloup, S., Huot, P.- V., Lang, C., Fichefet, T. & Fettweis, X. (2021). Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. The Cryosphere, 15, 1215-1236. https://doi. org/10.5194/tc-15-1215-2021
Kuipers Munneke, P., Van den Broeke, M., King, J., Gray, T. & Reijmer, C. (2012). Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula. The Cryosphere, 6, 353-363. https://doi.org/10.5194/tc-6-353-2012
Lefebre, F., Gallée, H., van Ypersele, J.-P. & Greuell, W. (2003). Modeling of snow and ice melt at ETH Camp (West Greenland): A study of surface albedo. Journal of Geophysical Research: Atmospheres, 108, 4231. https://doi.org/10.1029/2001JD001160
Lenaerts, J., Lhermitte, S., Drews, R., Ligtenberg, S., Berger, S., Helm, V., Smeets, C., Van Den Broeke, M., Van De Berg, W.J., Van Meijgaard, E., Eijkelboom, M. & Pattyn, F. (2017). Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf, Nature climate change, 7, 58-62. https:// doi.org/10.1038/nclimate3180
Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J., Berthier, E. & Nagler, T. (2020). Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment. Proceedings of the National Academy of Sciences of the USA, 117(40), 24735-24741. https://doi.org/10.1073/ pnas.1912890117
Mottram, R., Hansen, N., Kittel, C., van Wessem, J. M., Agosta, C., Amory, C., Boberg, F., van de Berg, W. J., Fettweis, X., Gossart, A., van Lipzig, N.P.M., van Meijgaard, E., Orr, A., Phillips, T., Webster, S., Simonsen, S.B. & Souverijns, N. (2021). What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. The Cryosphere, 15, 3751-3784. https://doi.org/10.5194/ tc-15-3751-2021
Navari, M., Margulis, S.A., Tedesco, M., Fettweis, X. & van de Wal, R.S. (2021). Reanalysis Surface Mass Balance of the Greenland Ice Sheet along K-transect (2000-2014). Geophysical Research Letters, e2021GL094602. https://doi. org/10.1029/2021GL094602
Pattyn, F., Ritz, C., Hanna, E., Asay-Davis, X., DeConto, R., Durand, G., Favier, L., Fettweis, X., Goelzer, H., Golledge, N.R., Kuipers Munneke, P., Lenaerts, J.T.M., Nowicki, S., Payne, A.K., Robinson, A., Seroussi, H., Trusel, L.D. & van den Broeke, M. (2018). The Greenland and Antarctic ice sheets under 1.5° C global warming. Nature Climate Change, 8, 1053-1061. https://doi.org/10.1038/s41558-018-0305-8
Picard, G. & Fily, M. (2006). Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes in acquisition hours. Remote sensing of environment, 104, 325-336. https://doi.org/10.1016/j.rse.2006.05.010
Picard, G., Fily, M. & Gallée, H. (2007). Surface melting derived from microwave radiometers: a climatic indicator in Antarctica. Annals of Glaciology, 46, 29-34. https://doi.org/10.3189/172756407782871684
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J. & Morlighem, M. (2019). Four decades of Antarctic Ice Sheet mass balance from 1979-2017. Proceedings of the National Academy of Sciences of the USA, 116(4), 1095-1103. https:// doi.org/10.1073/pnas.1812883116
Scambos, T.A., Berthier, E., Haran, T., Shuman, C.A., Cook, A.J., Ligtenberg, S.R.M. & Bohlander, J. (2014). Detailed ice loss pattern in the northern Antarctic Peninsula: widespread decline driven by ice front retreats. The Cryosphere, 8, 2135-2145. https:// doi.org/10.5194/tc-8-2135-2014
Scambos, T.A., Bohlander, J., Shuman, C.A. & Skvarca, P. (2004). Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophysical Research Letters, 31, L18402. https:// doi.org/10.1029/2004GL020670
Scambos, T., Fricker, H.A., Liu, C.-C., Bohlander, J., Fastook, J., Sargent, A., Massom, R. & Wu, A.-M. (2009). Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth and Planetary Science Letters, 280, 51-60. https:// doi.org/10.1016/j.epsl.2008.12.027
Steiner, N. & Tedesco, M. (2014). A wavelet melt detection algorithm applied to enhanced-resolution scatterometer data over Antarctica (2000-2009). The Cryosphere, 8, 25-40. https://doi.org/10.5194/ tc-8-25-2014
Tedesco, M., Abdalati, W. & Zwally, H.J. (2007). Persistent surface snowmelt over Antarctica (1987-2006) from 19.35 GHz brightness temperatures. Geophysical Research Letters, 34, L18504. doi:10.1029/2007GL031199
Tedesco, M. & Monaghan, A.J. (2009). An updated Antarctic melt record through 2009 and its linkages to high-latitude and tropical climate variability. Geophysical Research Letters, 36, L18502. https://doi. org/10.1029/2009GL039186
Torinesi, O., Fily, M. & Genthon, C. (2003). Variability and trends of the summer melt period of Antarctic ice margins since 1980 from microwave sensors. Journal of Climate, 16, 1047-1060. https://doi.org/10.1175/15 20-0442(2003)016%3C1047:VATOTS%3E2.0.CO;2
van den Broeke, M. (2005). Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophysical Research Letters, 32, L12815. https:// doi.org/10.1029/2005GL023247
Vieli, A., Payne, A.J., Shepherd, A. & Du, Z. (2007). Causes of pre-collapse changes of the Larsen B ice shelf: Numerical modelling and assimilation of satellite observations. Earth and Planetary Science Letters, 259, 297-306. https://doi.org/10.1016/j. epsl.2007.04.050
Wille, J.D., Favier, V., Dufour, A., Gorodetskaya, I.V., Turner, J., Agosta, C. & Codron, F. (2019). West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12, 911-916. https://doi. org/10.1038/s41561-019-0460-1
Wyard, C., Scholzen, C., Fettweis, X., Van Campenhout, J. & François, L. (2017). Decrease in climatic conditions favouring floods in the south-east of Belgium over 1959-2010 using the regional climate model MAR. International Journal of Climatology, 37, 2782-2796. https://doi.org/10.1002/joc.4879
Zwally, H.J. (1977). Microwave emissivity and accumulation rate of polar firn. Journal of Glaciololgy, 18(79), 195-214. https://doi:10.3189/ S0022143000021304
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.