Effects of graded levels of xylo-oligosaccharides on growth performance, serum parameters, intestinal morphology, and intestinal barrier function in weaned piglets.
Effects of graded levels of xylo-oligosaccharides on growth performance, serum parameters, intestinal morphology and intestinal barrier function in weaned piglets.pdf
[en] The objective of this study was to investigate the effects of xylo-oligosaccharides (XOSs) supplementation on growth performance, serum parameters, small intestinal morphology, intestinal mucosal integrity, and immune function in weaned piglets. A total of 240 weaned piglets with an average body weight (BW) of 8.82 ± 0.05 kg (28 d of age) were assigned randomly to four dietary treatments in a 28-d trial, including a control (CON) diet and three diets with XOS supplementation at the concentration of 100 (XOS100), 500 (XOS500), and 1,000 (XOS1000) mg/kg. There were four replicates per treatment with 15 pigs per pen. From day 1 to 14, there were no differences (P > 0.05) in average daily gain (ADG), average daily feed intake, and gain to feed ratio (G:F) during the different treatments. The different doses of XOSs showed a quadratic effect on BW on day 28, ADG, and G:F on day 1 to 28 of piglets (P < 0.05). From day 15 to 28, ADG of pigs fed the XOS500 diet was higher (P < 0.05) than pigs fed the CON diet. During the overall period (day 1 to 28), pigs fed the XOS500 diet had a higher BW, ADG, and G:F than pigs fed the CON diet (P < 0.05). In addition, compared with the CON group, the XOS500 group had significantly higher serum total antioxidant capacity, total superoxide dismutase and catalase levels, and lower malondialdehyde levels on days 14 and 28 (P < 0.05). The serum immunoglobulin G (IgG) concentration in the XOS500 group was also significantly higher compared with the CON group on days 14 and 28 (P < 0.05). However, serum immunoglobulin A and immunoglobulin M were not affected by the dietary treatments. Supplementation of XOS500 to the feed significantly increased the villus height (VH) and VH to crypt depth ratio in the jejunum and ileum in comparison with the CON and XOS1000 groups. Moreover, the XOS500 group significantly elevated the expression levels of occludin and zonula occludens protein-1 in the ileum compared with the CON group. The ileal interleukin (IL)-1β, IL-8, and interferon (IFN)-γ mRNA expression levels in the XOS100 and XOS500 groups were markedly lower than in the CON group. In contrast, the ileal IL-10 mRNA expression levels were remarkably higher in the XOS500 than in the CON group. In conclusion, XOSs have a beneficial effect on growth performance by improving serum antioxidant defense system, serum IgG, small intestinal structure, and intestinal barrier function in weaned piglets.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Chen, Yuxia ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Xie, Yining; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Zhong, Ruqing; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Han, Hui ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Liu, Lei; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Chen, Liang; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Zhang, Hongfu; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Beckers, Yves ; Université de Liège - ULiège > Département GxABT > Ingénierie des productions animales et nutrition
Everaert, Nadia ; Université de Liège - ULiège > Département GxABT
Language :
English
Title :
Effects of graded levels of xylo-oligosaccharides on growth performance, serum parameters, intestinal morphology, and intestinal barrier function in weaned piglets.
Agricultural Science and Technology Innovation Program
Funders :
NSCF - National Natural Science Foundation of China
Funding text :
We are grateful for the financial support from National Natural Science Foundation of China (No. 31702119) and the Agricultural Science and Technology Innovation Program (No. CAAS-ZDRW202006-02, ASTIPIAS07) in China.
Aachary, A. A., and S. G. Prapulla. 2011. Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr. Rev. Food Sci. F. 10(1):2-16. doi:10.1111/j.1541-4337.2010.00135.x.
Abdelmalek, B. E., D. Driss, F. Kallel, M. Guargouri, H. Missaoui, S. E. Chaabouni, M. A. Ayadi, and A. Bougatef. 2015. Effect of xylan oligosaccharides generated from corncobs on food acceptability, growth performance, haematology and immunological parameters of Dicentrarchus labrax fingerlings. Fish Physiol. Biochem. 41:1587-1596. doi:10.1007/s10695-015-0110-5.
Amorim, C., S. C. Silvério, K. L. J. Prather, and L. R. Rodrigues. 2019. From lignocellulosic residues to market: production and commercial potential of xylooligosaccharides. Biotechnol. Adv. 37(7):107397. doi:10.1016/j.biotechadv.2019.05.003.
Chelikani, P., I. Fita, and P. C. Loewen. 2004. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 61:192-208. doi:10.1007/s00018-003-3206-5.
Chen, H. H., Y. K. Chen, H. C. Chang, and Y. L. Su. 2012. Immunomodulatory effects of xylooligosaccharides[J]. Food Sci. Technol. Res. 18(2):195-199. doi:10.3136/fstr.18.195.
Chen, Y. X., Y. N. Xie, R. Q. Zhong, L. Liu, C. G. Lin, L. Xiao, L. Chen, H. F. Zhang, B. Yves, and E. Nadia. 2021. Effects of xylo-oligosaccharides on growth and gut microbiota as potential replacements for antibiotic in weaning piglets. Front. Microbiol. 12(2021). doi:10.3389/fmicb.2021.641172.
Cromwell, G. L. 2002. Why and how antibiotics are used in swine production. Anim. Biotechnol. 13:7-27. doi:10.1081/ABIO-120005767.
De Maesschalck, C., V. Eeckhaut, L. Maertens, L. De Lange, L. Marchal, C. Nezer, S. De Baere, S. Croubels, G. Daube, J. Dewulf, et al. 2015. Effects of xylo-oligosaccharides on broiler chicken performance and microbiota. Appl. Environ. Microbiol. 81:5880-5888. doi:10.1128/AEM.01616-15.
Ding, X. M., D. D. Li, S. P. Bai, J. P. Wang, Q. F. Zeng, Z. W. Su, Y. Xuan, and K. Y. Zhang. 2018. Effect of dietary xylooligosaccharides on intestinal characteristics, gut microbiota, cecal shortchain fatty acids, and plasma immune parameters of laying hens. Poult. Sci. 97:874-881. doi:10.3382/ps/pex372.
Han, Y. S., C. H. Tang, Q. Y. Zhao, T. F. Zhan, K. Zhang, Y. M. Han, and J. M. Zhang. 2018. Effects of dietary supplementation with combinations of organic and medium chain fatty acids as replacements for chlortetracycline on growth performance, serum immunity, and fecal microbiota of weaned piglets. Livest. Sci. 216:210-218. doi:10.1016/j.livsci.2018.08.013.
Hansen, C. H. F., H. Frokiaer, A. G. Christensen, A. Bergstrom, T. R. Licht, A. K. Hansen, and S. B. Metzdorff. 2013. Dietary xylooligosaccharide downregulates IFN-[Gamma] and the low-grade inflammatory cytokine IL-1[beta] systemically in mice. J. Nutr. 143(4):533-540. doi:10.3945/jn.112.172361.
Ighodaro, O. M., and O. A. Akinloye. 2017. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex. J. Med.:S2090506817301550. doi:10.1016/j.ajme.2017.09.001.
Jagtap, S., R. A. Deshmukh, S. Menon, and S. Das. 2017. Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals. Bioresour. Technol. 245(Pt A):283-288. doi:10.1016/j.biortech.2017.08.174.
Kiarie, E., L. F. Romero, and C. M. Nyachoti. 2013. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev. 26:71-88. doi:10.1017/S0954422413000048.
Komatsu, W., K. Ishihara, M. Murata, H. Saito, and K. Shinohara. 2003. Docosahexaenoic acid suppresses nitric oxide production and inducible nitric oxide synthase expression in interferon-gamma plus lipopolysaccharide-stimulated murine macrophages by inhibiting the oxidative stress. Free Radic. Biol. Med. 34:1006-1016. doi:10.1016/s0891-5849(03)00027-3.
Li, P., Y. L. Yin, D. Li, S. W. Kim, and G. Wu. 2007. Amino acids and immune function. Br. J. Nutr. 98:237-252. doi:10.1017/S000711450769936X.
Liu, J., S. Cao, J. Liu, Y. Xie, and H. Zhang. 2018a. Effect of probiotics and xylo-oligosaccharide supplementation on nutrient digestibility, intestinal health and noxious gas emission in weanling pigs. Asian-Australas. J. Anim. Sci. 31(10):1660-1669. doi:10.5713/ajas.17.0908.
Liu, Y., C. D. Espinosa, J. J. Abelilla, G. A. Casas, L. V. Lagos, S. A. Lee, W. B. Kwon, J. K. Mathai, D. M. D. L. Navarro, N. W. Jaworski, et al. 2018b. Non-antibiotic feed additives in diets for pigs: a review. Anim. Nutr. 4:113-125. doi:10.1016/j.aninu.2018.01.007.
Liu, P., X. S. Piao, P. A. Thacker, Z. K. Zeng, P. F. Li, D. Wang, and S. W. Kim. 2010. Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K88. J. Anim. Sci. 88:3871- 3879. doi:10.2527/jas.2009-2771.
Livak, K. J., and T. D. Schmittgen. 2002. Analysis of relative gene expression data using real-time quantitative PCR. Methods. 25(4):402-408. doi:10.1006/meth.2001.1262.
Lobo, V., A. Patil, A. Phatak, and N. Chandra. 2010. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev. 4:118-126. doi:10.4103/0973-7847.70902.
Martin-Venegas, R., S. Roig-Perez, R. Ferrer, and J. Moreno. 2006. Arachidonic acid cascade and epithelial barrier function during Caco-2 cell differentiation. J. Lipid Res. 47(7):1416-1423. doi:10.1194/jlr.M500564-JLR200.
National Research Council (NRC). 2012. Nutrient requirements of swine[J]. 11th rev. ed. Washington (DC): National Academies Press.
Pourabedin, M., L. Guan, and X. Zhao. 2015. Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens. Microbiome 3:15. doi:10.1186/s40168-015-0079-4.
Samal, L., and C. Behura. 2009. Prebiotics: an emerging nutritional approach for improving gut health of livestock and poultry. Asian J. Anim. Vet. Adv. 10(11):724-739. doi:10.3923/ajava.2015.724.739.
Samanta, A. K., N. Jayapal, C. Jayaram, S. Roy, A. P. Kolte, S. Senani, and M. Sridhar. 2015. Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Curr. Protein Pept. Sci. 19(1):48-67. doi:10.2174/138920371766616092 3155209.
Shatos, M. A., J. D. Ríos, Y. Horikawa, R. R. Hodges, E. L. Chang, C. R. Bernardino, P. A. Rubin, and D. A. Dartt. 2003. Isolation and characterization of cultured human conjunctival goblet cells. Invest. Ophthalmol. Vis. Sci. 44:2477-2486. doi:10.1167/iovs.02-0550.
Shin, D., S. Y. Chang, P. Bogere, K. Won, J. Y. Choi, Y. J. Choi, H. K. Lee, J. Hur, B. Y. Park, Y. Kim, et al. 2019. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS One. 14:e0220843. doi:10.1371/journal. pone.0220843.
Suo, H. Q., L. Lin, G. H. Xu, L. Xiao, X. G. Chen, R. R. Xia, L. Y. Zhang, and X. G. Luo. 2015. Effectiveness of dietary xylo-oligosaccharides for broilers fed a conventional corn-soybean meal diet. J. Integr. Agr. 14(010):2050-2057. doi:10.1016/S2095-3119(15)61101-7.
Teillant, A., C. Brower, and R. Laxminarayan. 2015. Economics of antibiotic growth promoters in livestock. Annu. Rev. Resour. Econ. 7(1):349-374. doi:10.1146/annurev-resource-100814-125015.
Turck, D., J. L. Bresson, B. Burlingame, T. Dean, S. Fairweather-Tait, M. Heinonen, K. I. Hirsch-Ernst, I. Mangelsdorf, H. J. Mcardle, A. Naska, et al. 2018. Safety of xylooligosaccharides (XOS) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 16(7). doi:10.2903/j.efsa.2018.5361.
Wang, J., Y. Cao, C. Wang, and B. Sun. 2011. Wheat bran xylooligosaccharides improve blood lipid metabolism and antioxidant status in rats fed a high-fat diet. Carbohyd. Polym. 86(3):1192-1197. doi:10.1016/j.carbpol.2011.06.014.
Wang, Y. Z., C. L. Xu, Z. H. An, J. X. Liu, and J. Feng. 2008. Effect of dietary bovine lactoferrin on performance and antioxidant status of piglets. Anim. Feed Sci. Tech. 140(3-4):326-336. doi:10.1016/j.anifeedsci.2007.02.006.
Yin, J., F. Li, X. Kong, C. Wen, Q. Guo, L. Zhang, W. Wang, Y. Duan, T. Li, Z. Tan, et al. 2019. Dietary xylo-oligosaccharide improves intestinal functions in weaned piglets. Food Funct. 10:2701- 2709. doi:10.1039/c8fo02485e.
Yu, X., J. Yin, L. Li, C. Luan, J. Zhang, C. Zhao, and S. Li. 2015. Prebiotic potential of xylooligosaccharides derived from corn cobs and their in vitro antioxidant activity when combined with Lactobacillus. J. Microbiol. Biotechnol. 25:1084-1092. doi:10.4014/jmb.1501.01022.
Yuan, L., W. Li, Q. Huo, C. Du, Z. Wang, B. Yi, and M. Wang. 2018. Effects of xylo-oligosaccharide and flavomycin on the immune function of broiler chickens. PeerJ. 6:e4435. doi:10.7717/peerj.4435.
Zhou, E., X. Pan, and X. Tian. 2009. Application study of xylooligosaccharide in layer production. Mod. Appl. Sci. 3(1): 103-107. doi:10.5539/mas.v3n1p103.
Zhu, L. H., K. L. Zhao, X. L. Chen, and J. X. Xu. 2012. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. J. Anim. Sci. 90: 2581-2589. doi:10.2527/jas.2012-4444.