Ultrasonography; Bone and Bones; Design variables; Emerging technologies; Functional grading; Functionally graded; Mechanical performance; Mechanistics; Multi materials; Recent progress; Tendon to bones; Ultrasound characterization; Arts and Humanities (miscellaneous); Acoustics and Ultrasonics
Abstract :
[en] Functional grading is a distinctive feature adopted by nature to improve the transition between tissues that present a strong mismatch in mechanical properties, a relevant example being the tendon-to-bone attachment. Recent progress in multi-material additive manufacturing now allows for the design and fabrication of bioinspired functionally graded soft-to-hard composites. Nevertheless, this emerging technology depends on several design variables, including both material and mechanistic ingredients, that are likely to affect the mechanical performance of such composites. In this paper, a model-based approach is developed to describe the interaction of ultrasound waves with homogeneous and heterogeneous additively manufactured samples, which respectively display a variation either of the material ingredients (e.g., ratio of the elementary constituents) or of their spatial arrangement (e.g., functional gradients, damage). Measurements are performed using longitudinal bulk waves, which are launched and detected using a linear transducer array. First, model is calibrated by exploiting the signals measured on the homogeneous samples, which allow identifying relationships between the model parameters and the material composition. Second, the model is validated by comparing the signals measured on the heterogeneous samples with those predicted numerically. Overall, the reported results pave the way for characterizing and optimizing multi-material systems that display complex bioinspired features.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Aghaei, Ali; Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
Bochud, Nicolas; Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
Rosi, Giuseppe; Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
Grossman, Quentin ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Ruffoni, Davide ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Naili, Salah; Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
Language :
English
Title :
Ultrasound characterization of bioinspired functionally graded soft-to-hard composites: Experiment and modeling.
The authors are in debt to Max Gattin for the fruitful discussions regarding the processing of the ultrasound signals and the Szabo wave equation. This work was partially supported by the BEST-AMUS project (IIN program, CNRS-INSIS, France).
Aghaei, A., Bochud, N., Rosi, G., and Naili, S. (2021). "Assessing the effective elastic properties of the tendon-to-bone insertion: A multiscale modeling approach," Biomech. Model Mechanobiol. 20 (2), 433-448. 10.1007/s10237-020-01392-7
Bakaric, M., Miloro, P., Javaherian, A., Cox, B. T., Treeby, B. E., and Brown, M. D. (2021). "Measurement of the ultrasound attenuation and dispersion in 3D-printed photopolymer materials from 1 to 3.5 MHz," J. Acoust. Soc. Am. 150 (4), 2798-2805. 10.1121/10.0006668
Benjamin, M., Toumi, H., Suzuki, D., Redman, S., Emery, P., and McGonagle, D. (2007). "Microdamage and altered vascularity at the enthesis-bone interface provides an anatomic explanation for bone involvement in the Hla-B27-associated spondylarthritides and allied disorders," Arthritis Rheum. 56 (1), 224-233. 10.1002/art.22290
Bochud, N., Gomez, A., Rus, G., and Peinado, A. (2015). "A sparse digital signal model for ultrasonic nondestructive evaluation of layered materials," Ultrasonics 62, 160-173. 10.1016/j.ultras.2015.05.013
Bochud, N., Laurent, J., Bruno, F., Royer, D., and Prada, C. (2018). "Towards real-time assessment of anisotropic plate properties using elastic guided waves," J. Acoust. Soc. Am. 143 (2), 1138-1147. 10.1121/1.5024353
Bochud, N., Vallet, Q., Minonzio, J.-G., and Laugier, P. (2017). "Predicting bone strength with ultrasonic guided waves," Sci. Rep. 7, 43628. 10.1038/srep43628
Cretu, N., and Nita, G. (2004). "Pulse propagation in finite elastic inhomogeneous media," Comput. Mater. Sci. 31 (3-4), 329-336. 10.1016/j.commatsci.2004.04.002
Deymier, A. C., Schwartz, A. G., Cai, Z., Daulton, T. L., Pasteris, J. D., Genin, G. M., and Thomopoulos, S. (2019). "The multiscale structural and mechanical effects of mouse supraspinatus muscle unloading on the mature enthesis," Acta. Biomater. 83, 302-313. 10.1016/j.actbio.2018.10.024
Dunlop, J. W. C., Weinkamer, R., and Fratzl, P. (2011). "Artful interfaces within biological materials," Mater. Today 14 (3), 70-78. 10.1016/S1369-7021(11)70056-6
Fariñas, M. D., Álvarez-Arenas, T., Cummins, G., Desmulliez, M. P. Y., Seetohul, V., and Cochran, S. (2016). "Assessment of the ultrasonic properties of additive manufactured materials for passive components of piezoelectric transducers," in IEEE International Ultrasonics Symposium, September 18-21, Tours, France, pp. 1-4.
Foster, D., Dapino, M., and Babu, S. (2013). "Elastic constants of ultrasonic additive manufactured al 3003-h18," Ultrasonics 53 (1), 211-218. 10.1016/j.ultras.2012.06.002
Giannatsis, J., and Dedoussis, V. (2009). "Additive fabrication technologies applied to medicine and health care: A review," Int. J. Adv. Manuf. Syst. 40 (1-2), 116-127. 10.1007/s00170-007-1308-1
He, P., and Zheng, J. (2001). "Acoustic dispersion and attenuation measurement using both transmitted and reflected pulses," Ultrasonics 39 (1), 27-32. 10.1016/S0041-624X(00)00037-8
Hériveaux, Y., Nguyen, V.-H., and Haïat, G. (2018). "Reflection of an ultrasonic wave on the bone-implant interface: A numerical study of the effect of the multiscale roughness," J. Acoust. Soc. Am. 144 (1), 488-499. 10.1121/1.5046524
Honarvar, F., and Varvani-Farahani, A. (2020). "A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control," Ultrasonics 108, 106227. 10.1016/j.ultras.2020.106227
Hu, Y., Birman, V., Deymier-Black, A., Schwartz, A. G., Thomopoulos, S., and Genin, G. M. (2015). "Stochastic interdigitation as a toughening mechanism at the interface between tendon and bone," Biophys. J. 108 (2), 431-437. 10.1016/j.bpj.2014.09.049
Jacquet, J.-R., Levassort, F., Ossant, F., and Grégoire, J.-M. (2015). "3D printed phantom for high frequency ultrasound imaging," in IEEE International Ultrasonics Symposium, October 21-24, Taipei, Taiwan, pp. 1-4.
Javidrad, H., and Salemi, S. (2020). "Determination of elastic constants of additive manufactured inconel 625 specimens using an ultrasonic technique," Int. J. Adv. Manuf. Technol. 107 (11), 4597-4607. 10.1007/s00170-020-05321-x
Jia, Z., Yu, Y., Hou, S., and Wang, L. (2019). "Biomimetic architected materials with improved dynamic performance," J. Mech. Phys. Solids 125, 178-197. 10.1016/j.jmps.2018.12.015
Kelly, J. F., McGough, R. J., and Meerschaert, M. M. (2008). "Analytical time-domain Green's functions for power-law media," J. Acoust. Soc. Am. 124 (5), 2861-2872. 10.1121/1.2977669
Leleux, A., Micheau, P., and Castaings, M. (2013). "Long range detection of defects in composite plates using lamb waves generated and detected by ultrasonic phased array probes," J. Nondestruct. Eval. 32 (2), 200-214. 10.1007/s10921-013-0173-0
Libonati, F., Gu, G. X., Qin, Z., Vergani, L., and Buehler, M. J. (2016). "Bone-inspired materials by design: Toughness amplification observed using 3D printing and testing," Adv. Eng. Mater. 18 (8), 1354-1363. 10.1002/adem.201600143
Liu, Y., Thomopoulos, S., Chen, C., Birman, V., Buehler, M. J., and Genin, G. M. (2014). "Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue," J. R. Soc. Interface 11 (92), 20130835. 10.1098/rsif.2013.0835
Liu, Z., Meyers, M. A., Zhang, Z., and Ritchie, R. O. (2017). "Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications," Prog. Mater. Sci. 88, 467-498. 10.1016/j.pmatsci.2017.04.013
Livings, R., Dayal, V., and Barnard, D. (2015). "Characterization of 3D rapid prototyped polymeric material by ultrasonic methods," AIP Conf. Proc. 1650, 807-816. 10.1063/1.4914684
Marczak, W. (1997). "Water as a standard in the measurements of speed of sound in liquids," J. Acoust. Soc. Am. 102 (5), 2776-2779. 10.1121/1.420332
Martinsson, J., Hägglund, F., and Carlson, J. E. (2008). "Complete post-separation of overlapping ultrasonic signals by combining hard and soft modeling," Ultrasonics 48 (5), 427-443. 10.1016/j.ultras.2008.03.003
Meisel, N. A., Dillard, D. A., and Williams, C. B. (2018). "Impact of material concentration and distribution on composite parts manufactured via multi-material jetting," Rapid Prototyp. J. 24 (5), 872-879. 10.1108/RPJ-01-2017-0005
Messineo, M. G., Frontini, G. L., Eliçabe, G. E., and Gaete-Garretón, L. (2013). "Equivalent ultrasonic impedance in multilayer media. A parameter estimation problem," Inverse Probl. Sci. Eng. 21 (8), 1268-1287. 10.1080/17415977.2012.757312
Mirzaali, M., de la Nava, A. H., Gunashekar, D., Nouri-Goushki, M., Veeger, R., Grossman, Q., Angeloni, L., Ghatkesar, M., Fratila-Apachitei, L., Ruffoni, D., Doubrovskid, E. L., and Zadpoora, A. A. (2020a). "Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printing," Compos. Struct. 237, 111867. 10.1016/j.compstruct.2020.111867
Mirzaali, M. J., Cruz Saldívar, M., Herranz de la Nava, A., Gunashekar, D., Nouri-Goushki, M., Doubrovski, E. L., and Zadpoor, A. A. (2020b). "Multi-material 3D printing of functionally graded hierarchical soft-hard composites," Adv. Eng. Mater. 22 (7), 1901142. 10.1002/adem.201901142
Näsholm, S. P., and Holm, S. (2011). "Linking multiple relaxation, power-law attenuation, and fractional wave equations," J. Acoust. Soc. Am. 130 (5), 3038-3045. 10.1121/1.3641457
Perikamana, S. K. M., Lee, J., Ahmad, T., Kim, E. M., Byun, H., Lee, S., and Shin, H. (2018). "Harnessing biochemical and structural cues for tenogenic differentiation of adipose derived stem cells (ADSCs) and development of an in vitro tissue interface mimicking tendon-bone insertion graft," Biomaterials 165, 79-93. 10.1016/j.biomaterials.2018.02.046
Rafiee, M., Farahani, R. D., and Therriault, D. (2020). "Multi-material 3D and 4D printing: A survey," Adv. Sci. 7 (12), 1902307. 10.1002/advs.201902307
Raišutis, R., Kažys, R., and Mažeika, L. (2007). "Application of the ultrasonic characterization methods for highly attenuating plastic materials," NDT E Int. 40 (4), 324-332. 10.1016/j.ndteint.2006.11.002
Rokhlin, S. I., and Wang, W. (1992). "Double through-transmission bulk wave method for ultrasonic phase velocity measurement and determination of elastic constants of composite materials," J. Acoust. Soc. Am. 91 (6), 3303-3312. 10.1121/1.402847
Rosi, G., Placidi, L., and Auffray, N. (2018). "On the validity range of strain-gradient elasticity: A mixed static-dynamic identification procedure," Eur. J. Mech. A Solids 69, 179-191. 10.1016/j.euromechsol.2017.12.005
Rubio, W. M., Paulino, G. H., and Silva, E. C. N. (2012). "Analysis, manufacture and characterization of Ni/Cu functionally graded structures," Mater. Des. 41, 255-265. 10.1016/j.matdes.2012.04.038
Saadat, F., Deymier, A., Birman, V., Thomopoulos, S., and Genin, G. (2016). "The concentration of stress at the rotator cuff tendon-to-bone attachment site is conserved across species," J. Mech. Behav. Biomed. Mater. 62, 24-32. 10.1016/j.jmbbm.2016.04.025
Sasso, M., Haïat, G., Yamato, Y., Naili, S., and Matsukawa, M. (2007). "Frequency dependence of ultrasonic attenuation in bovine cortical bone: An in vitro study," Ultrasound Med. Biol. 33 (12), 1933-1942. 10.1016/j.ultrasmedbio.2007.05.022
Slesarenko, V., and Rudykh, S. (2018). "Towards mechanical characterization of soft digital materials for multimaterial 3D-printing," Int. J. Eng. Sci. 123, 62-72. 10.1016/j.ijengsci.2017.11.011
Slotwinski, J. A., Garboczi, E. J., and Hebenstreit, K. M. (2014). "Porosity measurements and analysis for metal additive manufacturing process control," J. Res. Nat. Inst. Stand. Technol. 119, 494-528. 10.6028/jres.119.019
Studart, A. R. (2016). "Additive manufacturing of biologically-inspired materials," Chem. Soc. Rev. 45 (2), 359-376. 10.1039/C5CS00836K
Szabo, T. L., and Wu, J. (2000). "A model for longitudinal and shear wave propagation in viscoelastic media," J. Acoust. Soc. Am. 107 (5), 2437-2446. 10.1121/1.428630
Tits, A., and Ruffoni, D. (2020). "Joining soft tissues to bone: Insights from modeling and simulations," Bone Rep. 14, 100742. 10.1016/j.bonr.2020.100742
Velasco-Hogan, A., Xu, J., and Meyers, M. A. (2018). "Additive manufacturing as a method to design and optimize bioinspired structures," Adv. Mater. 30 (52), 1800940. 10.1002/adma.201800940
Zorzetto, L., Andena, L., Briatico-Vangosa, F., De Noni, L., Thomassin, J.-M., Jérôme, C., Grossman, Q., Mertens, A., Weinkamer, R., Rink, M., and Ruffoni, D. (2020). "Properties and role of interfaces in multimaterial 3D printed composites," Sci. Rep. 10 (1), 22285. 10.1038/s41598-020-79230-0
Zorzetto, L., and Ruffoni, D. (2019). "Wood-inspired 3D-printed helical composites with tunable and enhanced mechanical performance," Adv. Funct. Mater. 29 (1), 1805888. 10.1002/adfm.201805888