[en] Glandular trichomes of tobacco (Nicotiana tabacum) produce blends of acylsucroses contributing to the defence against pathogens and herbivorous insects. However, the mechanism of acylsugar assembly remains to be elucidated. We report on the isolation and characterization of two trichome-specific and endoplasmic-reticulum localized acylsugar acyltransferases, NtASAT1 and NtASAT2. They sequentially catalyse two additive steps of acyl donors to sucrose producing bi-acylsucrose. Knocking-out of NtASAT1 or NtASAT2 results in deficiency of acylsucrose, however, there was no effect on acylsugar accumulation in NtASAT1 or NtASAT2 overexpressing plants. Genomic and acylsugar profile analysis revealed that NtASATs are originated from the T subgenome, which is derived from diploid ancestor N. tomentosiformis producing acylsugars. These results revealed that NtASAT1 and NtASAT2 are enzymes involved in the acylsugar assembly in tobacco, providing a new approach and target genes for improving crop resistance against pathogens and insects.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Chang, Aixia ; Université de Liège - ULiège > TERRA Research Centre ; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao
Hu, Zhongyi ; Jiangxi Food Inspection and Testing Research Institute, Nanchang, China.
Chen, Biao; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao,
Vanderschuren, Hervé ; Université de Liège - ULiège > Département GxABT > Plant Sciences ; Tropical Crop Improvement Lab, Department of Biosystems, KU Leuven, Heverlee
Chen, Ming; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao,
Qu, Yafang; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao,
Yu, Weisong; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao,
Li, Yangyang ; Hunan Tobacco Research Institute, Changsha, China.
Sun, Huiqing; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao,
Cao, Jianmin; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao,
Vasudevan, Kumar ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Li, Chenying; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao,
Cao, Yanan; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao,
Zhang, Jianye; Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou,
Shen, Yeming ; Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou
Yang, Aiguo ; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao
Wang, Yuanying; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao,
Amme S, Rutten T, Melzer M, Sonsmann G, Vissers JP, Schlesier B, Mock HP. 2005. A proteome approach defnes protective functions of tobacco leaf trichomes. Proteomics 5, 2508-2518.
Arrendale RF, Severson RF, Sisson VA, Costello CE, Leary JA, Himmelsbach DS, Van Halbeek H. 1990. Characterization of the sucrose ester fraction from Nicotiana glutinosa. Journal of Agricultural and Food Chemistry 38, 75-85.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37, W202-W208.
Bednarek P, Osbourn A. 2009. Plant-microbe interactions: chemical diversity in plant defense. Science 324, 746-748.
Ben-Mahmoud S, Smeda JR, Chappell TM, Stafford-Banks C, Kaplinsky CH, Anderson T, Mutschler MA, Kennedy GG, Ullman DE. 2018. Acylsugar amount and fatty acid profle differentially suppress ovi-position by western fower thrips, Frankliniella occidentalis, on tomato and interspecifc hybrid fowers. PLoS ONE 13, e0201583.
Cai LL, Xie WF, Liu KJ, Zhang Y, Xie JP. 2009. Analysis of sucrose esters in oriental tobacco by GC/MS. Tobacco Science and Technology 260, 40-44. [In Chinese].
Chang AX, Chen B, Yang AG, Hu RS, Feng QF, Chen M, Yang XN, Luo CG, Li YY, Wang YY. 2020. The trichome-specifc acetolactate synthase NtALS1 gene, is involved in acylsugar biosynthesis in tobacco (Nicotiana tabacum L.). Planta 252, 13.
Chortyk OT, Kays SJ, Teng Q. 1997. Characterization of insecticidal sugar esters of Petunia. Journal of Agricultural and Food Chemistry 45, 270-275.
Chortyk OT, Severson RF, Cutler HC, Sisson VA. 1993. Antibiotic activities of sugar esters isolated from selected Nicotiana species. Bioscience, Biotechnology, and Biochemistry 57, 1355-1356.
Fan PX, Leong BJ, Last RL. 2019. Tip of the trichome: evolution of acyl-sugar metabolic diversity in Solanaceae. Current Opinion in Plant Biology 49, 8-16.
Fan PX, Miller AM, Liu X, Jones AD, Last RL. 2017. Evolution of a fipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity. Nature Communications 8, 2080.
Fan PX, Miller AM, Schilmiller AL, Liu X, Ofner I, Jones AD, Zamir D, Last RL. 2016. In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network. Proceedings of the National Academy of Sciences, USA 113, E239-E248.
Fan PX, Wang PP, Lou YR, et al. 2020. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. eLife 9, e56717.
Feng HL, Acosta-Gamboa L, Kruse LH, et al. 2022. Acylsugars protect Nicotiana benthamiana against insect herbivory and desiccation. Plant Molecular Biology. https://doi.org/10.1007/s11103-021-01191-3
Ghosh B, Westbrook TC, Jones AD. 2014. Comparative structural pro-fling of trichome specialized metabolites in tomato (Solanum lycopersicum) and S. habrochaites: acylsugar profles revealed by UHPLC/MS and NMR. Metabolomics 10, 496-507.
Halinski LP, Stepnowski P. 2013. GC-MS and MALDI-TOF MS profling of sucrose esters from Nicotiana tabacum and N. rustica. Zeitschrift fur Naturforschung C 68, 210-222.
Hill K, Rhode O. 1999. Sugar-based surfactants for consumer products and technical applications. Fett/Lipid 101, 25-33.
Jackson DM, Chortyk OT, Stephenson MG, Johnson AW, Harlow CD, Simmons AM, Sisson VA. 1998. Potential of Nicotiana species for production of sugar esters. Tobacco Science 42, 1-9.
Jia C, Wang Y, Zhu Y, Xu C, Mao D. 2013. Preparative isolation and structural characterization of sucrose ester isomers from oriental tobacco. Carbohydrate Research 372, 73-77.
Johnson AW, Severson RF. 1984. Leaf surface chemistry of tobacco bud-worm resistant tobacco. Journal of Agricultural Entomology 1, 23-84.
Kandra G, Severson R, Wagner GJ. 1990. Modifed branched-chain amino acid pathways give rise to acyl acids of sucrose esters exuded from tobacco leaf trichomes. European Journal of Biochemistry 188, 385-391.
Kandra L, Wagner GJ. 1990. Chlorsulfuron modifes biosynthesis of acyl acid substituents of sucrose esters secreted by tobacco trichomes. Plant Physiology 94, 906-912.
Kennedy BS, Nielsen MT, Severson RF, Sisson VA, Stephenson MK, Jackson DM. 1992. Leaf surface chemicals from Nicotiana affecting germination of Peronospora tabacina (adam) sporangia. Journal of Chemical Ecology 18, 1467-1479.
Kroumova AB, Wagner GJ. 2003. Different elongation pathways in the biosynthesis of acyl groups of trichome exudate sugar esters from various solanaceous plants. Planta 216, 1013-1021.
Kroumova AB, Xie Z, Wagner GJ. 1994. A pathway for the biosynthesis of straight and branched, odd-and even-length, medium-chain fatty acids in plants. Proceedings of the National Academy of Sciences, USA 91, 11437-11441.
Kroumova AB, Zaitlin D, Wagner GJ. 2016. Natural variability in acyl moieties of sugar esters produced by certain tobacco and other Solanaceae species. Phytochemistry 130, 218-227.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870-1874.
Lawson DM, Lunde CF, Mutschler MA. 1997. Marker-assisted transfer of acylsugar-mediated pest resistance from the wild tomato, Lycopersicon pennellii, to the cultivated tomato, Lycopersicon esculentum. Molecular Breeding 3, 307-317.
Leckie BM, D'Ambrosio DA, Chappell TM, Halitschke R, De Jong DM, Kessler A, Kennedy GG, Mutschler MA. 2016. Differential and syn-ergistic functionality of acylsugars in suppressing oviposition by insect herbivores. PLoS ONE 11, e0153345.
Leckie BM, De Jong DM, Mutschler MA. 2012. Quantitative trait loci increasing acylsugars in tomato breeding lines and their impacts on silver-leaf whitefies. Molecular Breeding 30, 1621-1634.
Leckie BM, Halitschke R, De Jong DM, Smeda JR, Kessler A, Mutschler MA. 2014. Quantitative trait loci regulating the fatty acid profle of acylsugars in tomato. Molecular Breeding 34, 1201-1213.
Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR. 2008. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Annals of Botany 101, 805-814.
Leong BJ, Hurney SM, Fiesel PD, Moghe GD, Jones AD, Last RL. 2020. Specialized metabolism in a nonmodel nightshade: trichome acylino-sitol biosynthesis. Plant Physiology 183, 915-924.
Li J, Mutanda I, Wang K, Yang L, Wang J, Wang Y. 2019. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana. Nature Communications 10, 4850.
Liu X, Enright M, Barry CS, Jones AD. 2017. Profling, isolation and structure elucidation of specialized acylsucrose metabolites accumulating in trichomes of Petunia species. Metabolomics 13, 85.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔCT method. Methods 25, 402-408.
Lou YR, Anthony TM, Fiesel PD, Arking RE, Christensen EM, Jones AD, Last RL. 2021. It happened again: convergent evolution of acylglu-cose specialized metabolism in black nightshade and wild tomato. Science Advances 7, eabj8726.
Luu VT, Weinhold A, Ullah C, Dressel S, Schoettner M, Gase K, Gaquerel E, Xu S, Baldwin IT. 2017. O-Acyl sugars protect a wild tobacco from both native fungal pathogens and a specialist herbivore. Plant Physiology 174, 370-386.
Maluf WR, Maciel GM, Gomes LAA, Cardoso MDG, Gonçalves LD, da Silva EC, Knapp M. 2010. Broad-spectrum arthropod resistance in hybrids between high-and low-acylsugar tomato lines. Crop Science 50, 439-450.
McKenzie CL, Weathersbee AA III, Puterka GJ. 2005. Toxicity of sucrose octanoate to egg, nymphal, and adult Bemisia tabaci (Hemiptera: Aleyrodidae) using a novel plant-based bioassay. Journal of Economic Entomology 98, 1242-1247.
Moghe GD, Last RL. 2015. Something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiology 169, 1512-1523.
Moghe GD, Leong BJ, Hurney SM, Jones AD, Last RL. 2017. Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. eLife 6, e28468.
Nadakuduti SS, Uebler JB, Liu X, Jones AD, Barry CS. 2017. Characterization of trichome-expressed BAHD acyltransferases in Petunia axillaris reveals distinct acylsugar assembly mechanisms within the Solanaceae. Plant Physiology 175, 36-50.
Ning J, Moghe GD, Leong B, Kim J, Ofner I, Wang Z, Adams C, Jones AD, Zamir D, Last RL. 2015. A feedback-insensitive isopropylmalate synthase affects acylsugar composition in cultivated and wild tomato. Plant Physiology 169, 1821-1835.
Pérez-Castorena AL, Martínez M, Maldonado E. 2010. Labdanes and sucrose esters from Physalis sordida. Journal of Natural Products 73, 1271-1276.
Pichersky E, Lewinsohn E. 2011. Convergent evolution in plant specialized metabolism. Annual Review of Plant Biology 62, 549-566.
Puterka GJ, Farone W, Palmer T, Barrington A. 2003. Structure-function relationships affecting the insecticidal and miticidal activity of sugar esters. Journal of Economic Entomology 96, 636-644.
Qu YF, Xu ML, Cao JM, Sun HQ, You XW, Wang GP, Jiang CH, Wang YY, Chang AX. 2017. Differential analysis of major glandular trichome secretion between different tobacco genotypes. Acta Tabacaria Sinica 24, 45-52. [In Chinese].
Rodríguez-López MJ, Garzo E, Bonani JP, Fernández-Muñoz R, Moriones E, Fereres A. 2012. Acylsucrose-producing tomato plants forces Bemisia tabaci to shift its preferred settling and feeding site. PLoS ONE 7, e33064.
Rodriguez AE, Tingey WM, Mutschler MA. 1993. Acylsugars of Lycopersicon pennellii deter settling and feeding of the green peach aphid (Homoptera: Aphididae). Journal of Economic Entomology 86, 34-39.
Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. 2019. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution 3, 430-439.
Schenck CA, Anthony TM, Jacobs MK, Jones AD, Last RL. 2022. Natural variation meets synthetic biology: promiscuous trichome expressed acyltransferases from Nicotiana acuminata. BioRxiv doi: 10.1101/2022.02.25.482030. [Preprint].
Schilmiller AL, Charbonneau AL, Last RL. 2012. Identifcation of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proceedings of the National Academy of Sciences, USA 109, 16377-16382.
Schilmiller AL, Gilgallon K, Ghosh B, Jones AD, Last RL. 2016. Acylsugar acylhydrolases: carboxylesterase-catalyzed hydrolysis of acyl-sugars in tomato trichomes. Plant Physiology 170, 1331-1344.
Schilmiller AL, Moghe GD, Fan P, Ghosh B, Ning J, Jones AD, Last RL. 2015. Functionally divergent alleles and duplicated loci encoding an acyltransferase contribute to acylsugar metabolite diversity in Solanum tri-chomes. The Plant Cell 27, 1002-1017.
Severson RF, Arrendale RF, Chortyk OT, Green CR, Thome FA, Stewart JL, Johnson AW. 1985. Isolation and characterization of the sucrose esters of the cuticular waxes of green tobacco leaf. Journal of Agricultural and Food Chemistry 33, 870-875.
Severson RF, Arrendale RF, Chortyk OT, Johnson AW, Jackson DM, Gwynn GR, Chaplin JF, Stephenson MG. 1984. Quantitation of the major cuticular components from green leaf of different tobacco types. Journal of Agricultural Food Chemistry 32, 566-570.
Simmons AT, Gurr GM, McGrath D, Martin PM, Nicol HI. 2004. Entrapment of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on glandular trichomes of Lycopersicon species. Australian Journal of Entomology 43, 196-200.
Slocombe SP, Schauvinhold I, McQuinn RP, et al. 2008. Transcriptomic and reverse genetic analyses of branched-chain fatty acid and acyl sugar production in Solanum pennellii and Nicotiana benthamiana. Plant Physiology 148, 1830-1846.
Smeda JR, Schilmiller AL, Anderson T, Ben-Mahmoud S, Ullman DE, Chappell TM, Kessler A, Mutschler MA. 2018. Combination of acylglucose QTL reveals additive and epistatic genetic interactions and impacts insect oviposition and virus infection. Molecular Breeding 38, 3.
Smeda JR, Schilmiller AL, Last RL, Mutschler MA. 2016. Introgression of acylsugar chemistry QTL modifes the composition and structure of acyl-sugars produced by high-accumulating tomato lines. Molecular Breeding 36, 160.
van der Hoeven RS, Steffens JC. 2000. Biosynthesis and elongation of short-and medium-chain-length fatty acids. Plant Physiology 122, 275-282.
Vontimitta V, Danehower DA, Steede T, Moon HS, Lewis RS. 2010. Analysis of a Nicotiana tabacum L. genomic region controlling two leaf surface chemistry traits. Journal of Agricultural and Food Chemistry 58, 294-300.
Walters DS, Steffens JC. 1990. Branched chain amino acid metabolism in the biosynthesis of Lycopersicon pennellii glucose esters. Plant Physiology 93, 1544-1551.
Wang E, Gan S, Wagner GJ. 2002. Isolation and characterization of the CYP71D16 trichome-specifc promoter from Nicotiana tabacum L. Journal of Experimental Botany 53, 1891-1897.
Weinhold A, Baldwin IT. 2011. Trichome-derived O-acyl sugars are a frst meal for caterpillars that tags them for predation. Proceedings of the National Academy of Sciences, USA 108, 7855-7859.
Weng JK. 2014. The evolutionary paths towards complexity: a metabolic perspective. New Phytologist 201, 1141-1149.